有时间延迟的简单传染模型中的同步和极限周期

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Ghassan Dibeh , Omar El Deeb
{"title":"有时间延迟的简单传染模型中的同步和极限周期","authors":"Ghassan Dibeh ,&nbsp;Omar El Deeb","doi":"10.1016/j.physd.2024.134417","DOIUrl":null,"url":null,"abstract":"<div><div>We examine a system of <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span> coupled non-linear delay-differential equations representing financial market dynamics. In such time delay systems, coupled oscillations have been derived. We linearize the system for small time delays and study its collective dynamics. Using analytical and numerical solutions, we obtain the bifurcation diagrams and analyze the corresponding regions of amplitude death, phase locking, limit cycles and market synchronization in terms of the system frequency-like parameters and time delays. We further numerically explore higher order systems with <span><math><mrow><mi>N</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, and demonstrate that limit cycles can be maintained for coupled <span><math><mrow><mi>N</mi><mo>−</mo></mrow></math></span>asset models with appropriate parameterization.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134417"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization and limit cycles in a simple contagion model with time delays\",\"authors\":\"Ghassan Dibeh ,&nbsp;Omar El Deeb\",\"doi\":\"10.1016/j.physd.2024.134417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We examine a system of <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span> coupled non-linear delay-differential equations representing financial market dynamics. In such time delay systems, coupled oscillations have been derived. We linearize the system for small time delays and study its collective dynamics. Using analytical and numerical solutions, we obtain the bifurcation diagrams and analyze the corresponding regions of amplitude death, phase locking, limit cycles and market synchronization in terms of the system frequency-like parameters and time delays. We further numerically explore higher order systems with <span><math><mrow><mi>N</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, and demonstrate that limit cycles can be maintained for coupled <span><math><mrow><mi>N</mi><mo>−</mo></mrow></math></span>asset models with appropriate parameterization.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"470 \",\"pages\":\"Article 134417\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003671\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003671","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个由 N=2 个耦合非线性延迟微分方程组成的系统,该系统代表了金融市场的动态。在这种时延系统中,耦合振荡已被推导出来。我们对小时间延迟系统进行线性化,并研究其集体动力学。通过分析和数值求解,我们得到了分岔图,并根据系统的类频参数和时间延迟分析了相应的振幅死区、相位锁定、极限循环和市场同步。我们进一步用数值方法探讨了 N>2 的高阶系统,并证明了在适当参数化的情况下,N-资产耦合模型可以维持极限循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization and limit cycles in a simple contagion model with time delays
We examine a system of N=2 coupled non-linear delay-differential equations representing financial market dynamics. In such time delay systems, coupled oscillations have been derived. We linearize the system for small time delays and study its collective dynamics. Using analytical and numerical solutions, we obtain the bifurcation diagrams and analyze the corresponding regions of amplitude death, phase locking, limit cycles and market synchronization in terms of the system frequency-like parameters and time delays. We further numerically explore higher order systems with N>2, and demonstrate that limit cycles can be maintained for coupled Nasset models with appropriate parameterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信