低温和高压条件下层流预混合氢火焰的实际流体效应

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS
Ziting Lv , Hanzhang Cao , Wang Han , Lijun Yang
{"title":"低温和高压条件下层流预混合氢火焰的实际流体效应","authors":"Ziting Lv ,&nbsp;Hanzhang Cao ,&nbsp;Wang Han ,&nbsp;Lijun Yang","doi":"10.1016/j.combustflame.2024.113837","DOIUrl":null,"url":null,"abstract":"<div><div>The combustion of hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) under cryogenic and high-pressure conditions has the potential to increase the volume-based energy density of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and combustion efficiency. Predictive modeling of cryogenic H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> premixed flames at high pressures requires a clear understanding of real-fluid effects. While substantial effort has been made to study the real-fluid effects in nonpremixed flames, comparatively fewer investigations have been performed to explore real-fluid effects on premixed flames, especially at cryogenic and high-pressure conditions. This work aims to fill a part of this gap by conducting a series of laminar premixed H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> flame simulations at cryogenic and high-pressure conditions (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>=</mo><mn>50</mn></mrow></math></span>–350<!--> <!-->K and <span><math><mrow><mi>p</mi><mo>=</mo><mn>10</mn><mo>,</mo><mspace></mspace><mn>20</mn><mo>,</mo><mspace></mspace><mn>40</mn></mrow></math></span> <!--> <!-->MPa). Four cases are considered to examine the role of corrections of the equation of state (EOS), thermodynamic properties, and transport properties in predicting flame structure and properties. It is found that the real-fluid effects mainly occur in the fresh/preheat regions and that the correction of EOS plays a critical role in the prediction of flame structure and the laminar flame speed (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>), while the correction of transport properties is critical for predicting flame thickness. Each correction could contribute to the predictions of the mass burning rate and the flame thickness but hardly affect the flame temperature (less than 1% relative difference). A scaling law of <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>Real</mi></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>Ideal</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> (<span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> is the compressibility factor of the unburned mixture) is proposed, which can be used to readily predict <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> of real fluid from the speed evaluated by the ideal gas model. In addition, the Monte Carlo sampling method is used to perform uncertainty quantification of S<span><math><msub><mrow></mrow><mrow><mi>L</mi></mrow></msub></math></span> due to the uncertainty of the real-fluid model parameters. The results show that the critical properties of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> play a role in the uncertainty of S<span><math><msub><mrow></mrow><mrow><mi>L</mi></mrow></msub></math></span>, while the overall relative deviation is less than 2%, and the uncertainty decreases significantly with the increase of unburned mixture temperature.</div><div><strong>Novelty and significance statement</strong></div><div>This study comprehensively evaluates real-fluid effects on laminar premixed H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> flames under cryogenic and high-pressure conditions by considering different levels of real-fluid correction. We highlight the significance of the correction of transport properties for predicting flame thickness. A scaling law for real-fluid laminar flame speed is proposed for the first time. This work serves as a foundational step towards enhancing our understanding of real-fluid effects on cryogenic H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> combustion.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113837"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-fluid effects on laminar premixed hydrogen flames under cryogenic and high-pressure conditions\",\"authors\":\"Ziting Lv ,&nbsp;Hanzhang Cao ,&nbsp;Wang Han ,&nbsp;Lijun Yang\",\"doi\":\"10.1016/j.combustflame.2024.113837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The combustion of hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) under cryogenic and high-pressure conditions has the potential to increase the volume-based energy density of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and combustion efficiency. Predictive modeling of cryogenic H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> premixed flames at high pressures requires a clear understanding of real-fluid effects. While substantial effort has been made to study the real-fluid effects in nonpremixed flames, comparatively fewer investigations have been performed to explore real-fluid effects on premixed flames, especially at cryogenic and high-pressure conditions. This work aims to fill a part of this gap by conducting a series of laminar premixed H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> flame simulations at cryogenic and high-pressure conditions (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>=</mo><mn>50</mn></mrow></math></span>–350<!--> <!-->K and <span><math><mrow><mi>p</mi><mo>=</mo><mn>10</mn><mo>,</mo><mspace></mspace><mn>20</mn><mo>,</mo><mspace></mspace><mn>40</mn></mrow></math></span> <!--> <!-->MPa). Four cases are considered to examine the role of corrections of the equation of state (EOS), thermodynamic properties, and transport properties in predicting flame structure and properties. It is found that the real-fluid effects mainly occur in the fresh/preheat regions and that the correction of EOS plays a critical role in the prediction of flame structure and the laminar flame speed (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>), while the correction of transport properties is critical for predicting flame thickness. Each correction could contribute to the predictions of the mass burning rate and the flame thickness but hardly affect the flame temperature (less than 1% relative difference). A scaling law of <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>Real</mi></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>Ideal</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span> (<span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> is the compressibility factor of the unburned mixture) is proposed, which can be used to readily predict <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> of real fluid from the speed evaluated by the ideal gas model. In addition, the Monte Carlo sampling method is used to perform uncertainty quantification of S<span><math><msub><mrow></mrow><mrow><mi>L</mi></mrow></msub></math></span> due to the uncertainty of the real-fluid model parameters. The results show that the critical properties of H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> play a role in the uncertainty of S<span><math><msub><mrow></mrow><mrow><mi>L</mi></mrow></msub></math></span>, while the overall relative deviation is less than 2%, and the uncertainty decreases significantly with the increase of unburned mixture temperature.</div><div><strong>Novelty and significance statement</strong></div><div>This study comprehensively evaluates real-fluid effects on laminar premixed H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> flames under cryogenic and high-pressure conditions by considering different levels of real-fluid correction. We highlight the significance of the correction of transport properties for predicting flame thickness. A scaling law for real-fluid laminar flame speed is proposed for the first time. This work serves as a foundational step towards enhancing our understanding of real-fluid effects on cryogenic H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> combustion.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"272 \",\"pages\":\"Article 113837\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024005467\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024005467","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在低温和高压条件下燃烧氢气(H2)有可能提高氢气的体积能量密度和燃烧效率。要对低温高压条件下的氢气预混合火焰进行预测建模,就必须清楚地了解实际流体效应。虽然研究非预混合火焰中实际流体效应的工作已经做了大量努力,但探索预混合火焰实际流体效应的研究相对较少,尤其是在低温和高压条件下。本研究旨在通过在低温和高压条件下(Tu=50-350 K 和 p=10,20,40 MPa)进行一系列层状预混 H2 火焰模拟,填补部分空白。研究考虑了四种情况,以检验状态方程(EOS)、热力学特性和传输特性的修正在预测火焰结构和特性方面的作用。研究发现,实际流体效应主要发生在新鲜/预热区域,EOS 修正在预测火焰结构和层流火焰速度(SL)方面起着关键作用,而传输特性修正对预测火焰厚度至关重要。每种修正都有助于预测质量燃烧速率和火焰厚度,但几乎不影响火焰温度(相对差异小于 1%)。提出了 SLReal/SLIdeal=Zu (Zu 为未燃烧混合物的压缩系数)的比例定律,可用于根据理想气体模型评估的速度轻松预测实际流体的 SL。此外,还采用蒙特卡罗采样法对由于实际流体模型参数的不确定性而导致的 SL 进行了不确定性量化。结果表明,H2 的临界特性对 SL 的不确定性有影响,但总体相对偏差小于 2%,且随着未燃烧混合物温度的升高,不确定性显著减小。新颖性和意义声明本研究通过考虑不同程度的真实流体修正,全面评估了真实流体对低温和高压条件下层状预混合 H2/O2 火焰的影响。我们强调了修正传输特性对预测火焰厚度的重要意义。我们首次提出了真实流体层流火焰速度的比例定律。这项工作为我们加深了解真实流体对低温 H2 燃烧的影响迈出了基础性的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-fluid effects on laminar premixed hydrogen flames under cryogenic and high-pressure conditions
The combustion of hydrogen (H2) under cryogenic and high-pressure conditions has the potential to increase the volume-based energy density of H2 and combustion efficiency. Predictive modeling of cryogenic H2 premixed flames at high pressures requires a clear understanding of real-fluid effects. While substantial effort has been made to study the real-fluid effects in nonpremixed flames, comparatively fewer investigations have been performed to explore real-fluid effects on premixed flames, especially at cryogenic and high-pressure conditions. This work aims to fill a part of this gap by conducting a series of laminar premixed H2 flame simulations at cryogenic and high-pressure conditions (Tu=50–350 K and p=10,20,40  MPa). Four cases are considered to examine the role of corrections of the equation of state (EOS), thermodynamic properties, and transport properties in predicting flame structure and properties. It is found that the real-fluid effects mainly occur in the fresh/preheat regions and that the correction of EOS plays a critical role in the prediction of flame structure and the laminar flame speed (SL), while the correction of transport properties is critical for predicting flame thickness. Each correction could contribute to the predictions of the mass burning rate and the flame thickness but hardly affect the flame temperature (less than 1% relative difference). A scaling law of SLReal/SLIdeal=Zu (Zu is the compressibility factor of the unburned mixture) is proposed, which can be used to readily predict SL of real fluid from the speed evaluated by the ideal gas model. In addition, the Monte Carlo sampling method is used to perform uncertainty quantification of SL due to the uncertainty of the real-fluid model parameters. The results show that the critical properties of H2 play a role in the uncertainty of SL, while the overall relative deviation is less than 2%, and the uncertainty decreases significantly with the increase of unburned mixture temperature.
Novelty and significance statement
This study comprehensively evaluates real-fluid effects on laminar premixed H2/O2 flames under cryogenic and high-pressure conditions by considering different levels of real-fluid correction. We highlight the significance of the correction of transport properties for predicting flame thickness. A scaling law for real-fluid laminar flame speed is proposed for the first time. This work serves as a foundational step towards enhancing our understanding of real-fluid effects on cryogenic H2 combustion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信