基于贝叶斯深度学习的材料挖掘难度识别和不确定性分析

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shijiang Li , Shaojie Wang , Xiu Chen , Gongxi Zhou , Liang Hou
{"title":"基于贝叶斯深度学习的材料挖掘难度识别和不确定性分析","authors":"Shijiang Li ,&nbsp;Shaojie Wang ,&nbsp;Xiu Chen ,&nbsp;Gongxi Zhou ,&nbsp;Liang Hou","doi":"10.1016/j.jii.2024.100728","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately assessing the difficulty of material excavation is crucial for reducing excavator energy consumption, ensuring operational safety, and optimizing excavator efficiency. Addressing the challenges of uncertain and difficult-to-judge excavation conditions for underground materials, this paper proposes a Bayesian deep learning-based method that integrates excavation process data to identify excavation difficulty. Firstly, we constructed a deep learning model based on Bayesian theory and decomposed the uncertainty of the identification results into aleatory uncertainty and epistemic uncertainty. Next, through a mechanistic analysis of the interaction between materials and the excavator bucket during excavation, we identified the input features for the model. Finally, we validated the effectiveness of the method through experiments. The results show that the proposed method not only accurately identifies the excavation difficulty of the material but also quantifies and decomposes the uncertainty of the identification results, demonstrating both theoretical significance and practical application value.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100728"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of material excavation difficulty and uncertainty analysis based on Bayesian deep learning\",\"authors\":\"Shijiang Li ,&nbsp;Shaojie Wang ,&nbsp;Xiu Chen ,&nbsp;Gongxi Zhou ,&nbsp;Liang Hou\",\"doi\":\"10.1016/j.jii.2024.100728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately assessing the difficulty of material excavation is crucial for reducing excavator energy consumption, ensuring operational safety, and optimizing excavator efficiency. Addressing the challenges of uncertain and difficult-to-judge excavation conditions for underground materials, this paper proposes a Bayesian deep learning-based method that integrates excavation process data to identify excavation difficulty. Firstly, we constructed a deep learning model based on Bayesian theory and decomposed the uncertainty of the identification results into aleatory uncertainty and epistemic uncertainty. Next, through a mechanistic analysis of the interaction between materials and the excavator bucket during excavation, we identified the input features for the model. Finally, we validated the effectiveness of the method through experiments. The results show that the proposed method not only accurately identifies the excavation difficulty of the material but also quantifies and decomposes the uncertainty of the identification results, demonstrating both theoretical significance and practical application value.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"42 \",\"pages\":\"Article 100728\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001717\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001717","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

准确评估材料挖掘难度对于降低挖掘机能耗、确保作业安全和优化挖掘机效率至关重要。针对地下材料挖掘条件不确定、难以判断的难题,本文提出了一种基于贝叶斯深度学习的方法,综合挖掘过程数据来识别挖掘难度。首先,我们构建了基于贝叶斯理论的深度学习模型,并将识别结果的不确定性分解为可知的不确定性和认识的不确定性。其次,通过对挖掘过程中材料与挖掘机铲斗之间相互作用的机理分析,我们确定了模型的输入特征。最后,我们通过实验验证了该方法的有效性。结果表明,所提出的方法不仅能准确识别材料的挖掘难度,还能对识别结果的不确定性进行量化和分解,体现了理论意义和实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of material excavation difficulty and uncertainty analysis based on Bayesian deep learning
Accurately assessing the difficulty of material excavation is crucial for reducing excavator energy consumption, ensuring operational safety, and optimizing excavator efficiency. Addressing the challenges of uncertain and difficult-to-judge excavation conditions for underground materials, this paper proposes a Bayesian deep learning-based method that integrates excavation process data to identify excavation difficulty. Firstly, we constructed a deep learning model based on Bayesian theory and decomposed the uncertainty of the identification results into aleatory uncertainty and epistemic uncertainty. Next, through a mechanistic analysis of the interaction between materials and the excavator bucket during excavation, we identified the input features for the model. Finally, we validated the effectiveness of the method through experiments. The results show that the proposed method not only accurately identifies the excavation difficulty of the material but also quantifies and decomposes the uncertainty of the identification results, demonstrating both theoretical significance and practical application value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信