{"title":"EDLIoT:在物联网中使用调度算法降低能耗和延迟的方法","authors":"Arash Ghorbannia Delavar, Hamed Bagheri","doi":"10.1016/j.jii.2024.100719","DOIUrl":null,"url":null,"abstract":"<div><div>Decreasing energy consumption in networks with limited resources, such as the Internet of Things, has always been one of the main challenges in guaranteeing network performance. In this article, cooperative game theory is employed to improve the cooperation patterns of fog computing resources. The EDLIoT method consists of two main steps: “Topology Construction” and “Determining Optimal Fog Computing Resources to Process IoT Object Tasks”. In the first step of the proposed method, the set of reliable communications in the network is identified to establish connections between IoT objects and fog computing resources in the form of a tree structure. Then, in the second step, a model based on cooperative game theory and the cost function is used to determine the optimal computing resources in the fog layer for outsourcing the processing tasks of IoT objects. In EDLIoT, active IoT objects perform computation in the fog layer instead of locally, to conserve energy. This is done so that IoT objects, if possible, discover the most suitable processing resources in the fog based on characteristics such as energy consumption, delay, and processing power of the computing resource. The efficiency of the proposed method has been evaluated in a simulated environment, and the results have been compared with those of previous algorithms. The results demonstrate that using the EDLIoT method, in addition to decreasing energy consumption and delay, more computing tasks can be processed through fog resources, thereby increasing the quality of service for IoT users.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100719"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EDLIoT: A method for decreasing energy consumption and latency using scheduling algorithm in Internet of Things\",\"authors\":\"Arash Ghorbannia Delavar, Hamed Bagheri\",\"doi\":\"10.1016/j.jii.2024.100719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Decreasing energy consumption in networks with limited resources, such as the Internet of Things, has always been one of the main challenges in guaranteeing network performance. In this article, cooperative game theory is employed to improve the cooperation patterns of fog computing resources. The EDLIoT method consists of two main steps: “Topology Construction” and “Determining Optimal Fog Computing Resources to Process IoT Object Tasks”. In the first step of the proposed method, the set of reliable communications in the network is identified to establish connections between IoT objects and fog computing resources in the form of a tree structure. Then, in the second step, a model based on cooperative game theory and the cost function is used to determine the optimal computing resources in the fog layer for outsourcing the processing tasks of IoT objects. In EDLIoT, active IoT objects perform computation in the fog layer instead of locally, to conserve energy. This is done so that IoT objects, if possible, discover the most suitable processing resources in the fog based on characteristics such as energy consumption, delay, and processing power of the computing resource. The efficiency of the proposed method has been evaluated in a simulated environment, and the results have been compared with those of previous algorithms. The results demonstrate that using the EDLIoT method, in addition to decreasing energy consumption and delay, more computing tasks can be processed through fog resources, thereby increasing the quality of service for IoT users.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"42 \",\"pages\":\"Article 100719\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001626\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001626","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
EDLIoT: A method for decreasing energy consumption and latency using scheduling algorithm in Internet of Things
Decreasing energy consumption in networks with limited resources, such as the Internet of Things, has always been one of the main challenges in guaranteeing network performance. In this article, cooperative game theory is employed to improve the cooperation patterns of fog computing resources. The EDLIoT method consists of two main steps: “Topology Construction” and “Determining Optimal Fog Computing Resources to Process IoT Object Tasks”. In the first step of the proposed method, the set of reliable communications in the network is identified to establish connections between IoT objects and fog computing resources in the form of a tree structure. Then, in the second step, a model based on cooperative game theory and the cost function is used to determine the optimal computing resources in the fog layer for outsourcing the processing tasks of IoT objects. In EDLIoT, active IoT objects perform computation in the fog layer instead of locally, to conserve energy. This is done so that IoT objects, if possible, discover the most suitable processing resources in the fog based on characteristics such as energy consumption, delay, and processing power of the computing resource. The efficiency of the proposed method has been evaluated in a simulated environment, and the results have been compared with those of previous algorithms. The results demonstrate that using the EDLIoT method, in addition to decreasing energy consumption and delay, more computing tasks can be processed through fog resources, thereby increasing the quality of service for IoT users.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.