金纳米团簇分子极化性建模的机器学习方法

Abhishek Ojha , Satya S. Bulusu , Arup Banerjee
{"title":"金纳米团簇分子极化性建模的机器学习方法","authors":"Abhishek Ojha ,&nbsp;Satya S. Bulusu ,&nbsp;Arup Banerjee","doi":"10.1016/j.aichem.2024.100080","DOIUrl":null,"url":null,"abstract":"<div><div>The polarizability of molecules describes their response to an external electric field. It quantifies the ability of a system to form an induced dipole moment when subjected to an electric field. In this work, we investigated isotropic polarizability and anisotropy in the polarizability of gold nanoclusters using various machine-learning algorithms. We utilized high-order invariant descriptors based on spherical harmonics, integrated with machine-learning models like artificial neural network, Gaussian process regression, and kernel ridge regression. Our results demonstrate the efficacy of machine-learning in accurately predicting the polarizability of gold nanoclusters. We find that ANN-based model performs better than the other models.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"2 2","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches for modelling of molecular polarizability in gold nanoclusters\",\"authors\":\"Abhishek Ojha ,&nbsp;Satya S. Bulusu ,&nbsp;Arup Banerjee\",\"doi\":\"10.1016/j.aichem.2024.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The polarizability of molecules describes their response to an external electric field. It quantifies the ability of a system to form an induced dipole moment when subjected to an electric field. In this work, we investigated isotropic polarizability and anisotropy in the polarizability of gold nanoclusters using various machine-learning algorithms. We utilized high-order invariant descriptors based on spherical harmonics, integrated with machine-learning models like artificial neural network, Gaussian process regression, and kernel ridge regression. Our results demonstrate the efficacy of machine-learning in accurately predicting the polarizability of gold nanoclusters. We find that ANN-based model performs better than the other models.</div></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":\"2 2\",\"pages\":\"Article 100080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949747724000381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747724000381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子的极化性描述了分子对外部电场的反应。它量化了一个系统在受到电场作用时形成诱导偶极矩的能力。在这项工作中,我们使用各种机器学习算法研究了金纳米团簇的各向同性极化性和各向异性极化性。我们利用了基于球谐波的高阶不变描述符,并将其与人工神经网络、高斯过程回归和核脊回归等机器学习模型相结合。我们的研究结果证明了机器学习在准确预测金纳米团簇极化性方面的功效。我们发现基于人工神经网络的模型比其他模型表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning approaches for modelling of molecular polarizability in gold nanoclusters

Machine learning approaches for modelling of molecular polarizability in gold nanoclusters
The polarizability of molecules describes their response to an external electric field. It quantifies the ability of a system to form an induced dipole moment when subjected to an electric field. In this work, we investigated isotropic polarizability and anisotropy in the polarizability of gold nanoclusters using various machine-learning algorithms. We utilized high-order invariant descriptors based on spherical harmonics, integrated with machine-learning models like artificial neural network, Gaussian process regression, and kernel ridge regression. Our results demonstrate the efficacy of machine-learning in accurately predicting the polarizability of gold nanoclusters. We find that ANN-based model performs better than the other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信