{"title":"金纳米团簇分子极化性建模的机器学习方法","authors":"Abhishek Ojha , Satya S. Bulusu , Arup Banerjee","doi":"10.1016/j.aichem.2024.100080","DOIUrl":null,"url":null,"abstract":"<div><div>The polarizability of molecules describes their response to an external electric field. It quantifies the ability of a system to form an induced dipole moment when subjected to an electric field. In this work, we investigated isotropic polarizability and anisotropy in the polarizability of gold nanoclusters using various machine-learning algorithms. We utilized high-order invariant descriptors based on spherical harmonics, integrated with machine-learning models like artificial neural network, Gaussian process regression, and kernel ridge regression. Our results demonstrate the efficacy of machine-learning in accurately predicting the polarizability of gold nanoclusters. We find that ANN-based model performs better than the other models.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"2 2","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches for modelling of molecular polarizability in gold nanoclusters\",\"authors\":\"Abhishek Ojha , Satya S. Bulusu , Arup Banerjee\",\"doi\":\"10.1016/j.aichem.2024.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The polarizability of molecules describes their response to an external electric field. It quantifies the ability of a system to form an induced dipole moment when subjected to an electric field. In this work, we investigated isotropic polarizability and anisotropy in the polarizability of gold nanoclusters using various machine-learning algorithms. We utilized high-order invariant descriptors based on spherical harmonics, integrated with machine-learning models like artificial neural network, Gaussian process regression, and kernel ridge regression. Our results demonstrate the efficacy of machine-learning in accurately predicting the polarizability of gold nanoclusters. We find that ANN-based model performs better than the other models.</div></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":\"2 2\",\"pages\":\"Article 100080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949747724000381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747724000381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning approaches for modelling of molecular polarizability in gold nanoclusters
The polarizability of molecules describes their response to an external electric field. It quantifies the ability of a system to form an induced dipole moment when subjected to an electric field. In this work, we investigated isotropic polarizability and anisotropy in the polarizability of gold nanoclusters using various machine-learning algorithms. We utilized high-order invariant descriptors based on spherical harmonics, integrated with machine-learning models like artificial neural network, Gaussian process regression, and kernel ridge regression. Our results demonstrate the efficacy of machine-learning in accurately predicting the polarizability of gold nanoclusters. We find that ANN-based model performs better than the other models.