一般多交映哈密顿 PDE 的局部能量守恒标量辅助变量方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiaxiang Cai , Yushun Wang
{"title":"一般多交映哈密顿 PDE 的局部能量守恒标量辅助变量方法","authors":"Jiaxiang Cai ,&nbsp;Yushun Wang","doi":"10.1016/j.jcp.2024.113573","DOIUrl":null,"url":null,"abstract":"<div><div>We develop two classes of general-purpose second-order integrators for the general multi-symplectic Hamiltonian system by incorporating a scalar auxiliary variable. Unlike the previous methods introduced in <span><span>[22]</span></span>, <span><span>[31]</span></span>, these new approaches do not impose constraints on the state function of multi-symplectic system, and can preserve the original local/global energy conservation laws exactly. Moreover, the approaches are computationally efficient, as they only require solving linear equations with the same constant coefficients at each time step along with some additional scalar nonlinear equations. We employ the proposed methods to solve various equations, and the numerical results validate their solution accuracy, effectiveness, robustness, and energy-preserving ability.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113573"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local energy-preserving scalar auxiliary variable approaches for general multi-symplectic Hamiltonian PDEs\",\"authors\":\"Jiaxiang Cai ,&nbsp;Yushun Wang\",\"doi\":\"10.1016/j.jcp.2024.113573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop two classes of general-purpose second-order integrators for the general multi-symplectic Hamiltonian system by incorporating a scalar auxiliary variable. Unlike the previous methods introduced in <span><span>[22]</span></span>, <span><span>[31]</span></span>, these new approaches do not impose constraints on the state function of multi-symplectic system, and can preserve the original local/global energy conservation laws exactly. Moreover, the approaches are computationally efficient, as they only require solving linear equations with the same constant coefficients at each time step along with some additional scalar nonlinear equations. We employ the proposed methods to solve various equations, and the numerical results validate their solution accuracy, effectiveness, robustness, and energy-preserving ability.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113573\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008210\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008210","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

通过加入标量辅助变量,我们为一般多交点哈密顿系统开发了两类通用二阶积分器。与之前在 [22] 和 [31] 中介绍的方法不同,这些新方法不对多交点系统的状态函数施加约束,可以精确地保留原始的局部/全局能量守恒定律。此外,这些方法的计算效率很高,因为它们只需要在每个时间步求解具有相同常数系数的线性方程以及一些额外的标量非线性方程。我们采用所提出的方法求解各种方程,数值结果验证了这些方法的求解精度、有效性、鲁棒性和能量守恒能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local energy-preserving scalar auxiliary variable approaches for general multi-symplectic Hamiltonian PDEs
We develop two classes of general-purpose second-order integrators for the general multi-symplectic Hamiltonian system by incorporating a scalar auxiliary variable. Unlike the previous methods introduced in [22], [31], these new approaches do not impose constraints on the state function of multi-symplectic system, and can preserve the original local/global energy conservation laws exactly. Moreover, the approaches are computationally efficient, as they only require solving linear equations with the same constant coefficients at each time step along with some additional scalar nonlinear equations. We employ the proposed methods to solve various equations, and the numerical results validate their solution accuracy, effectiveness, robustness, and energy-preserving ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信