{"title":"一般多交映哈密顿 PDE 的局部能量守恒标量辅助变量方法","authors":"Jiaxiang Cai , Yushun Wang","doi":"10.1016/j.jcp.2024.113573","DOIUrl":null,"url":null,"abstract":"<div><div>We develop two classes of general-purpose second-order integrators for the general multi-symplectic Hamiltonian system by incorporating a scalar auxiliary variable. Unlike the previous methods introduced in <span><span>[22]</span></span>, <span><span>[31]</span></span>, these new approaches do not impose constraints on the state function of multi-symplectic system, and can preserve the original local/global energy conservation laws exactly. Moreover, the approaches are computationally efficient, as they only require solving linear equations with the same constant coefficients at each time step along with some additional scalar nonlinear equations. We employ the proposed methods to solve various equations, and the numerical results validate their solution accuracy, effectiveness, robustness, and energy-preserving ability.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113573"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local energy-preserving scalar auxiliary variable approaches for general multi-symplectic Hamiltonian PDEs\",\"authors\":\"Jiaxiang Cai , Yushun Wang\",\"doi\":\"10.1016/j.jcp.2024.113573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop two classes of general-purpose second-order integrators for the general multi-symplectic Hamiltonian system by incorporating a scalar auxiliary variable. Unlike the previous methods introduced in <span><span>[22]</span></span>, <span><span>[31]</span></span>, these new approaches do not impose constraints on the state function of multi-symplectic system, and can preserve the original local/global energy conservation laws exactly. Moreover, the approaches are computationally efficient, as they only require solving linear equations with the same constant coefficients at each time step along with some additional scalar nonlinear equations. We employ the proposed methods to solve various equations, and the numerical results validate their solution accuracy, effectiveness, robustness, and energy-preserving ability.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113573\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008210\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008210","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Local energy-preserving scalar auxiliary variable approaches for general multi-symplectic Hamiltonian PDEs
We develop two classes of general-purpose second-order integrators for the general multi-symplectic Hamiltonian system by incorporating a scalar auxiliary variable. Unlike the previous methods introduced in [22], [31], these new approaches do not impose constraints on the state function of multi-symplectic system, and can preserve the original local/global energy conservation laws exactly. Moreover, the approaches are computationally efficient, as they only require solving linear equations with the same constant coefficients at each time step along with some additional scalar nonlinear equations. We employ the proposed methods to solve various equations, and the numerical results validate their solution accuracy, effectiveness, robustness, and energy-preserving ability.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.