用于高性能计算的射线分解辐射传输

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Owen Mylotte, Matthew T. McGurn, Kenneth Budzinski, Paul E. DesJardin
{"title":"用于高性能计算的射线分解辐射传输","authors":"Owen Mylotte,&nbsp;Matthew T. McGurn,&nbsp;Kenneth Budzinski,&nbsp;Paul E. DesJardin","doi":"10.1016/j.jcp.2024.113567","DOIUrl":null,"url":null,"abstract":"<div><div>Radiation transport is essential in many high-performance computing problems. However, its complexity presents computational challenges. This study presents a novel algorithm, the ray decomposition method for long characteristics transport, designed to address communication challenges specific to distributed memory computing. Reordering of ray property calculations reduces communication cost associated with sequential ray integration. Verification studies demonstrate solution convergence. Performance modeling of the ray decomposition method predicts the compute time from first principles. Consistency of experimentally measured performance with analytical predictions validates the performance scaling model. This work represents a step towards more scalable and efficient radiation transport simulations.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113567"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ray decomposition radiation transport for high performance computing\",\"authors\":\"Owen Mylotte,&nbsp;Matthew T. McGurn,&nbsp;Kenneth Budzinski,&nbsp;Paul E. DesJardin\",\"doi\":\"10.1016/j.jcp.2024.113567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Radiation transport is essential in many high-performance computing problems. However, its complexity presents computational challenges. This study presents a novel algorithm, the ray decomposition method for long characteristics transport, designed to address communication challenges specific to distributed memory computing. Reordering of ray property calculations reduces communication cost associated with sequential ray integration. Verification studies demonstrate solution convergence. Performance modeling of the ray decomposition method predicts the compute time from first principles. Consistency of experimentally measured performance with analytical predictions validates the performance scaling model. This work represents a step towards more scalable and efficient radiation transport simulations.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113567\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008155\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008155","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

辐射传输在许多高性能计算问题中至关重要。然而,其复杂性给计算带来了挑战。本研究提出了一种新型算法,即用于长特性传输的射线分解法,旨在解决分布式内存计算所特有的通信难题。射线特性计算的重新排序降低了与顺序射线整合相关的通信成本。验证研究证明了解决方案的收敛性。射线分解方法的性能建模根据第一原理预测了计算时间。实验测量的性能与分析预测的一致性验证了性能扩展模型。这项工作标志着向更可扩展、更高效的辐射传输模拟迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ray decomposition radiation transport for high performance computing
Radiation transport is essential in many high-performance computing problems. However, its complexity presents computational challenges. This study presents a novel algorithm, the ray decomposition method for long characteristics transport, designed to address communication challenges specific to distributed memory computing. Reordering of ray property calculations reduces communication cost associated with sequential ray integration. Verification studies demonstrate solution convergence. Performance modeling of the ray decomposition method predicts the compute time from first principles. Consistency of experimentally measured performance with analytical predictions validates the performance scaling model. This work represents a step towards more scalable and efficient radiation transport simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信