{"title":"关于各向异性椭圆问题离散化数值方法的精度","authors":"Chang Yang , Fabrice Deluzet , Jacek Narski","doi":"10.1016/j.jcp.2024.113568","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper the loss of precision of numerical methods discretizing anisotropic elliptic problems is analyzed. This feature is prominently observed when the coordinates and the mesh are unrelated to the anisotropy direction. This issue is carefully analyzed and related to the asymptotic instability of the discretizations. The investigations carried out within this paper demonstrate that, high order methods commonly implemented to cope with this difficulty, though bringing evident gains, remain for far from optimal and limited to moderate anisotropy strengths. A second issue, related to the reconstruction of the solution discrete parallel gradients, is also addressed. In particular, it is demonstrated that an accurate approximation can hardly be computed from a precise numerical approximation of the solution. A new method is proposed, consisting in introducing an auxiliary variable providing discrete approximations of the parallel gradient with a precision unrelated to the anisotropy strength.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113568"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the accuracy of numerical methods for the discretization of anisotropic elliptic problems\",\"authors\":\"Chang Yang , Fabrice Deluzet , Jacek Narski\",\"doi\":\"10.1016/j.jcp.2024.113568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper the loss of precision of numerical methods discretizing anisotropic elliptic problems is analyzed. This feature is prominently observed when the coordinates and the mesh are unrelated to the anisotropy direction. This issue is carefully analyzed and related to the asymptotic instability of the discretizations. The investigations carried out within this paper demonstrate that, high order methods commonly implemented to cope with this difficulty, though bringing evident gains, remain for far from optimal and limited to moderate anisotropy strengths. A second issue, related to the reconstruction of the solution discrete parallel gradients, is also addressed. In particular, it is demonstrated that an accurate approximation can hardly be computed from a precise numerical approximation of the solution. A new method is proposed, consisting in introducing an auxiliary variable providing discrete approximations of the parallel gradient with a precision unrelated to the anisotropy strength.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113568\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008167\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008167","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the accuracy of numerical methods for the discretization of anisotropic elliptic problems
In this paper the loss of precision of numerical methods discretizing anisotropic elliptic problems is analyzed. This feature is prominently observed when the coordinates and the mesh are unrelated to the anisotropy direction. This issue is carefully analyzed and related to the asymptotic instability of the discretizations. The investigations carried out within this paper demonstrate that, high order methods commonly implemented to cope with this difficulty, though bringing evident gains, remain for far from optimal and limited to moderate anisotropy strengths. A second issue, related to the reconstruction of the solution discrete parallel gradients, is also addressed. In particular, it is demonstrated that an accurate approximation can hardly be computed from a precise numerical approximation of the solution. A new method is proposed, consisting in introducing an auxiliary variable providing discrete approximations of the parallel gradient with a precision unrelated to the anisotropy strength.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.