INSAT-3DR 卫星得出的印度上空干微爆指数评估

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Priyanshu Gupta, Neeti Singh, R.K. Giri, A.K. Mitra
{"title":"INSAT-3DR 卫星得出的印度上空干微爆指数评估","authors":"Priyanshu Gupta,&nbsp;Neeti Singh,&nbsp;R.K. Giri,&nbsp;A.K. Mitra","doi":"10.1016/j.rsase.2024.101393","DOIUrl":null,"url":null,"abstract":"<div><div>Dry microbursts can generate severe meteorological conditions including turbulence and strong winds even in the absence of precipitation. Present study evaluate the performance of Indian geostationary satellite, INSAT-3DR in capturing Dry Microburst Index (DMI) and validated against the radiosonde dataset. Data is validated across 14 selected stations across the India for 3 year (2020–2022). However, radiosonde data is very limited but spatial and temporal resolution of INSAT-3DR is good to analyse and predict the atmospheric phenomena. Different statistics have been used to validate INSAT-3DR against radiosonde observation. A Taylor plot confirm strong correlation and low RMSE between INSAT-3DR and radiosonde data. Spatial distribution depicts annual mean DMI values, it is influence by diurnal variation, regional weather pattern, and seasonal factors. Seasonal analysis indicates lower DMI during winter (5–45) due to reduced instability and moisture, while post-monsoon season witness increased DMI owing to warmer, humid conditions. The pre-monsoon season shows rising DMI as temperature increase. Study also analyses the co-occurrence of thunderstorm during DMI events, revealing a Probability of Detection (POD) of 0.75 for the INSAT-3DR DMI product, indicating 75% correct identification of thunderstorms. However, the False Alarm Rate (FAR) suggest false alarms occurred in approximately 55.2% of cases. Overall, study underscores the importance of considering local factors and conditions in interpreting INSAT-3DR satellite-based DMI data. Understanding and accurately predicting dry microbursts are crucial for enhancing aviation safety and improving the resilience of infrastructure in regions prone to these phenomena.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101393"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Dry Microburst Index over India derived from INSAT-3DR satellite\",\"authors\":\"Priyanshu Gupta,&nbsp;Neeti Singh,&nbsp;R.K. Giri,&nbsp;A.K. Mitra\",\"doi\":\"10.1016/j.rsase.2024.101393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dry microbursts can generate severe meteorological conditions including turbulence and strong winds even in the absence of precipitation. Present study evaluate the performance of Indian geostationary satellite, INSAT-3DR in capturing Dry Microburst Index (DMI) and validated against the radiosonde dataset. Data is validated across 14 selected stations across the India for 3 year (2020–2022). However, radiosonde data is very limited but spatial and temporal resolution of INSAT-3DR is good to analyse and predict the atmospheric phenomena. Different statistics have been used to validate INSAT-3DR against radiosonde observation. A Taylor plot confirm strong correlation and low RMSE between INSAT-3DR and radiosonde data. Spatial distribution depicts annual mean DMI values, it is influence by diurnal variation, regional weather pattern, and seasonal factors. Seasonal analysis indicates lower DMI during winter (5–45) due to reduced instability and moisture, while post-monsoon season witness increased DMI owing to warmer, humid conditions. The pre-monsoon season shows rising DMI as temperature increase. Study also analyses the co-occurrence of thunderstorm during DMI events, revealing a Probability of Detection (POD) of 0.75 for the INSAT-3DR DMI product, indicating 75% correct identification of thunderstorms. However, the False Alarm Rate (FAR) suggest false alarms occurred in approximately 55.2% of cases. Overall, study underscores the importance of considering local factors and conditions in interpreting INSAT-3DR satellite-based DMI data. Understanding and accurately predicting dry microbursts are crucial for enhancing aviation safety and improving the resilience of infrastructure in regions prone to these phenomena.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101393\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235293852400257X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235293852400257X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

即使在没有降水的情况下,干燥微爆也会产生包括湍流和强风在内的恶劣气象条件。本研究评估了印度地球静止卫星 INSAT-3DR 在捕捉干燥微爆指数(DMI)方面的性能,并与无线电探空仪数据集进行了验证。对印度 14 个选定站点 3 年(2020-2022 年)的数据进行了验证。然而,无线电探空仪的数据非常有限,但 INSAT-3DR 的空间和时间分辨率很高,可用于分析和预测大气现象。INSAT-3DR 与无线电探空仪观测数据采用了不同的统计方法进行验证。泰勒图证实 INSAT-3DR 和无线电探空仪数据之间具有很强的相关性和较低的 RMSE。空间分布描述了 DMI 的年平均值,它受到昼夜变化、区域天气模式和季节因素的影响。季节分析表明,冬季(5-45 月)由于不稳定性和湿度降低,DMI 值较低,而季风后季节由于温暖潮湿,DMI 值增加。季风季节前,随着气温的升高,DMI 有所上升。研究还分析了 DMI 事件期间雷暴的共现情况,结果显示 INSAT-3DR DMI 产品的检测概率 (POD) 为 0.75,表明雷暴的正确识别率为 75%。然而,误报率(FAR)表明约 55.2% 的情况下会出现误报。总之,研究强调了在解释 INSAT-3DR 星基 DMI 数据时考虑当地因素和条件的重要性。了解和准确预测干微暴对加强航空安全和提高易受这些现象影响地区的基础设施的抗灾能力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Dry Microburst Index over India derived from INSAT-3DR satellite
Dry microbursts can generate severe meteorological conditions including turbulence and strong winds even in the absence of precipitation. Present study evaluate the performance of Indian geostationary satellite, INSAT-3DR in capturing Dry Microburst Index (DMI) and validated against the radiosonde dataset. Data is validated across 14 selected stations across the India for 3 year (2020–2022). However, radiosonde data is very limited but spatial and temporal resolution of INSAT-3DR is good to analyse and predict the atmospheric phenomena. Different statistics have been used to validate INSAT-3DR against radiosonde observation. A Taylor plot confirm strong correlation and low RMSE between INSAT-3DR and radiosonde data. Spatial distribution depicts annual mean DMI values, it is influence by diurnal variation, regional weather pattern, and seasonal factors. Seasonal analysis indicates lower DMI during winter (5–45) due to reduced instability and moisture, while post-monsoon season witness increased DMI owing to warmer, humid conditions. The pre-monsoon season shows rising DMI as temperature increase. Study also analyses the co-occurrence of thunderstorm during DMI events, revealing a Probability of Detection (POD) of 0.75 for the INSAT-3DR DMI product, indicating 75% correct identification of thunderstorms. However, the False Alarm Rate (FAR) suggest false alarms occurred in approximately 55.2% of cases. Overall, study underscores the importance of considering local factors and conditions in interpreting INSAT-3DR satellite-based DMI data. Understanding and accurately predicting dry microbursts are crucial for enhancing aviation safety and improving the resilience of infrastructure in regions prone to these phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信