{"title":"添加 Ce 对 FeCrAl-ODS 钢中纳米颗粒的形态、晶体和金属/氧化物界面结构的影响","authors":"Tian-Xing Yang, Peng Dou, Chang-Jun Zhou","doi":"10.1016/j.jnucmat.2024.155484","DOIUrl":null,"url":null,"abstract":"<div><div>FeCrAl oxide dispersion strengthened (ODS) steel is one of the most promising candidate cladding materials in generation IV nuclear reactors due to its exceptional macro-properties. To address the stringent performance requirements of supercritical water-cooled reactors (SCPWRs), two FeCrAl-ODS steels, i.e., 3Al–0.1Ti (Fe–16Cr–3Al–0.1Ti–0.34Y<sub>2</sub>O<sub>3</sub>) and 2Al–0.1Ti–0.35Ce (Fe–16Cr–2Al–0.1Ti–0.35Ce–0.36Y<sub>2</sub>O<sub>3</sub>), were developed. This study aims to investigate how Ce addition influences the microstructure and the formation mechanisms of various oxides in ODS steels. Therefore, the grain & nanoparticle morphologies, and crystal & interface structures of nano-scale oxides of the two ODS steels were studied by transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). The mean grain diameter of 3Al–0.1Ti and 2Al–0.1Ti–0.35Ce is 1.1 μm and 0.82 μm, respectively. Compared with 3Al–0.1Ti, the average diameter of particles of 2Al–0.1Ti–0.35Ce is relatively smaller. The results indicate that adding Ce can refine the grains and nano-sized particles. For 3Al–0.1Ti, the main particles are Y–Al–O with a proportion of ∼81.4 %. For 2Al–0.1Ti–0.35Ce, the main particles are Y–Ce and Y–Ti oxides with quantity ratios of ∼52.2 % and ∼22.1 %, respectively, while the quantity ratio of Y–Al oxides is only 12.3 %. This indicates that adding Ce can impede the occurrence of Y–Al–O while facilitating the generation of Y–Ce–O. Moreover, it is the first time that Y<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> oxide has been detected in yttria-added ODS steels with Ce. The findings obtained from this study provide key insights into the mechanisms of oxide formation & polymorphic transitions, and microstructural differences due to Ce addition. This will provide pivotal direction for the optimization of alloy compositions, promoting the innovation of ODS steels. Additionally, the feasibility analysis of the two ODS steels indicates their applicability to the SCPWR fuel cladding.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155484"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Ce addition on the morphology, crystal and metal/oxide interface structures of nanoparticles in FeCrAl-ODS steels\",\"authors\":\"Tian-Xing Yang, Peng Dou, Chang-Jun Zhou\",\"doi\":\"10.1016/j.jnucmat.2024.155484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>FeCrAl oxide dispersion strengthened (ODS) steel is one of the most promising candidate cladding materials in generation IV nuclear reactors due to its exceptional macro-properties. To address the stringent performance requirements of supercritical water-cooled reactors (SCPWRs), two FeCrAl-ODS steels, i.e., 3Al–0.1Ti (Fe–16Cr–3Al–0.1Ti–0.34Y<sub>2</sub>O<sub>3</sub>) and 2Al–0.1Ti–0.35Ce (Fe–16Cr–2Al–0.1Ti–0.35Ce–0.36Y<sub>2</sub>O<sub>3</sub>), were developed. This study aims to investigate how Ce addition influences the microstructure and the formation mechanisms of various oxides in ODS steels. Therefore, the grain & nanoparticle morphologies, and crystal & interface structures of nano-scale oxides of the two ODS steels were studied by transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). The mean grain diameter of 3Al–0.1Ti and 2Al–0.1Ti–0.35Ce is 1.1 μm and 0.82 μm, respectively. Compared with 3Al–0.1Ti, the average diameter of particles of 2Al–0.1Ti–0.35Ce is relatively smaller. The results indicate that adding Ce can refine the grains and nano-sized particles. For 3Al–0.1Ti, the main particles are Y–Al–O with a proportion of ∼81.4 %. For 2Al–0.1Ti–0.35Ce, the main particles are Y–Ce and Y–Ti oxides with quantity ratios of ∼52.2 % and ∼22.1 %, respectively, while the quantity ratio of Y–Al oxides is only 12.3 %. This indicates that adding Ce can impede the occurrence of Y–Al–O while facilitating the generation of Y–Ce–O. Moreover, it is the first time that Y<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> oxide has been detected in yttria-added ODS steels with Ce. The findings obtained from this study provide key insights into the mechanisms of oxide formation & polymorphic transitions, and microstructural differences due to Ce addition. This will provide pivotal direction for the optimization of alloy compositions, promoting the innovation of ODS steels. Additionally, the feasibility analysis of the two ODS steels indicates their applicability to the SCPWR fuel cladding.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"604 \",\"pages\":\"Article 155484\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311524005853\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005853","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of Ce addition on the morphology, crystal and metal/oxide interface structures of nanoparticles in FeCrAl-ODS steels
FeCrAl oxide dispersion strengthened (ODS) steel is one of the most promising candidate cladding materials in generation IV nuclear reactors due to its exceptional macro-properties. To address the stringent performance requirements of supercritical water-cooled reactors (SCPWRs), two FeCrAl-ODS steels, i.e., 3Al–0.1Ti (Fe–16Cr–3Al–0.1Ti–0.34Y2O3) and 2Al–0.1Ti–0.35Ce (Fe–16Cr–2Al–0.1Ti–0.35Ce–0.36Y2O3), were developed. This study aims to investigate how Ce addition influences the microstructure and the formation mechanisms of various oxides in ODS steels. Therefore, the grain & nanoparticle morphologies, and crystal & interface structures of nano-scale oxides of the two ODS steels were studied by transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). The mean grain diameter of 3Al–0.1Ti and 2Al–0.1Ti–0.35Ce is 1.1 μm and 0.82 μm, respectively. Compared with 3Al–0.1Ti, the average diameter of particles of 2Al–0.1Ti–0.35Ce is relatively smaller. The results indicate that adding Ce can refine the grains and nano-sized particles. For 3Al–0.1Ti, the main particles are Y–Al–O with a proportion of ∼81.4 %. For 2Al–0.1Ti–0.35Ce, the main particles are Y–Ce and Y–Ti oxides with quantity ratios of ∼52.2 % and ∼22.1 %, respectively, while the quantity ratio of Y–Al oxides is only 12.3 %. This indicates that adding Ce can impede the occurrence of Y–Al–O while facilitating the generation of Y–Ce–O. Moreover, it is the first time that Y2Ce2O7 oxide has been detected in yttria-added ODS steels with Ce. The findings obtained from this study provide key insights into the mechanisms of oxide formation & polymorphic transitions, and microstructural differences due to Ce addition. This will provide pivotal direction for the optimization of alloy compositions, promoting the innovation of ODS steels. Additionally, the feasibility analysis of the two ODS steels indicates their applicability to the SCPWR fuel cladding.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.