功能时间序列的拟合优度检验及其在 Ornstein-Uhlenbeck 过程中的应用

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
J. Álvarez-Liébana , A. López-Pérez , W. González-Manteiga , M. Febrero-Bande
{"title":"功能时间序列的拟合优度检验及其在 Ornstein-Uhlenbeck 过程中的应用","authors":"J. Álvarez-Liébana ,&nbsp;A. López-Pérez ,&nbsp;W. González-Manteiga ,&nbsp;M. Febrero-Bande","doi":"10.1016/j.csda.2024.108092","DOIUrl":null,"url":null,"abstract":"<div><div>High-frequency financial data can be collected as a sequence of time-ordered curves, such as intraday prices. The Functional Data Analysis (FDA) framework offers a powerful approach to uncover information embedded in the shape of the daily paths, often unavailable from classical statistical methods. A novel goodness-of-fit test for autoregressive Hilbertian (ARH) models is introduced, imposing only the Hilbert-Schmidt condition on the autocorrelation operator. The test statistic is formulated in terms of a Cramér–von Mises norm, with calibration achieved via a wild bootstrap resampling procedure. A simulation study examines the test's finite-sample performance in terms of power and size. Furthermore, a new specification test for diffusion models, including Ornstein-Uhlenbeck processes, is proposed, illustrated with an application to intraday currency exchange rates. Specifically, a two-stage methodology is proffered: firstly, the relationship between functional samples and their lagged values is assessed using an ARH(1) model; second, under linearity, a functional F-test is conducted.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108092"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes\",\"authors\":\"J. Álvarez-Liébana ,&nbsp;A. López-Pérez ,&nbsp;W. González-Manteiga ,&nbsp;M. Febrero-Bande\",\"doi\":\"10.1016/j.csda.2024.108092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-frequency financial data can be collected as a sequence of time-ordered curves, such as intraday prices. The Functional Data Analysis (FDA) framework offers a powerful approach to uncover information embedded in the shape of the daily paths, often unavailable from classical statistical methods. A novel goodness-of-fit test for autoregressive Hilbertian (ARH) models is introduced, imposing only the Hilbert-Schmidt condition on the autocorrelation operator. The test statistic is formulated in terms of a Cramér–von Mises norm, with calibration achieved via a wild bootstrap resampling procedure. A simulation study examines the test's finite-sample performance in terms of power and size. Furthermore, a new specification test for diffusion models, including Ornstein-Uhlenbeck processes, is proposed, illustrated with an application to intraday currency exchange rates. Specifically, a two-stage methodology is proffered: firstly, the relationship between functional samples and their lagged values is assessed using an ARH(1) model; second, under linearity, a functional F-test is conducted.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"203 \",\"pages\":\"Article 108092\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001762\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001762","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

高频金融数据可以作为一连串有时间顺序的曲线来收集,例如盘中价格。函数数据分析(FDA)框架提供了一种强大的方法,可以揭示蕴含在每日路径形状中的信息,而这些信息往往是经典统计方法无法获得的。本文引入了一种新的自回归希尔伯特(ARH)模型拟合优度检验,只对自相关算子施加希尔伯特-施密特条件。检验统计量是用 Cramér-von Mises 准则表示的,校准是通过野生引导重采样程序实现的。一项模拟研究考察了该检验在功率和规模方面的有限样本性能。此外,还针对扩散模型(包括奥恩斯坦-乌伦贝克过程)提出了一种新的规范检验方法,并将其应用于日内货币汇率。具体而言,提出了一种两阶段方法:首先,使用 ARH(1) 模型评估函数样本与其滞后值之间的关系;其次,在线性条件下进行函数 F 检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
High-frequency financial data can be collected as a sequence of time-ordered curves, such as intraday prices. The Functional Data Analysis (FDA) framework offers a powerful approach to uncover information embedded in the shape of the daily paths, often unavailable from classical statistical methods. A novel goodness-of-fit test for autoregressive Hilbertian (ARH) models is introduced, imposing only the Hilbert-Schmidt condition on the autocorrelation operator. The test statistic is formulated in terms of a Cramér–von Mises norm, with calibration achieved via a wild bootstrap resampling procedure. A simulation study examines the test's finite-sample performance in terms of power and size. Furthermore, a new specification test for diffusion models, including Ornstein-Uhlenbeck processes, is proposed, illustrated with an application to intraday currency exchange rates. Specifically, a two-stage methodology is proffered: firstly, the relationship between functional samples and their lagged values is assessed using an ARH(1) model; second, under linearity, a functional F-test is conducted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信