基于事件触发的 IRL 分散容错保证成本控制,用于互联系统,防止执行器故障

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuling Liang , Yanhong Luo , Hanguang Su , Xiaoling Zhang , Hongbin Chang , Jun Zhang
{"title":"基于事件触发的 IRL 分散容错保证成本控制,用于互联系统,防止执行器故障","authors":"Yuling Liang ,&nbsp;Yanhong Luo ,&nbsp;Hanguang Su ,&nbsp;Xiaoling Zhang ,&nbsp;Hongbin Chang ,&nbsp;Jun Zhang","doi":"10.1016/j.neucom.2024.128837","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel data-based decentralized guaranteed cost (DGC) fault tolerant control (FTC) scheme for the large-scale systems subject to actuator faults and mismatched interconnection. First, the FTC issues of interconnected systems are converted into a series of near optimal event-triggered control (ETC) methods for isolated subsystems via constructing a modified performance index function of each subsystem. By means of adaptive dynamic programming (ADP) algorithm, the upper bound of performance index function of large-scale systems can be obtained by solving the Hamilton-Jacobi-Bellman (HJB) equation of each auxiliary subsystem. Second, according to the proposed ADP-based decentralized approach and utilizing the event-based synchronous integral reinforcement learning (IRL) algorithm, a model-free guaranteed cost (GC) FTC approach is developed for interconnected large-scale system which can relax the restriction on the condition that system functions must be known. Further, the ultimate uniformly bounded (UUB) stability of auxiliary subsystems can be proved according to the Lyapunov principle. Finally, the effectiveness of the proposed control method is verified by presenting the simulation results.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128837"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered explorized IRL-based decentralized fault-tolerant guaranteed cost control for interconnected systems against actuator failures\",\"authors\":\"Yuling Liang ,&nbsp;Yanhong Luo ,&nbsp;Hanguang Su ,&nbsp;Xiaoling Zhang ,&nbsp;Hongbin Chang ,&nbsp;Jun Zhang\",\"doi\":\"10.1016/j.neucom.2024.128837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel data-based decentralized guaranteed cost (DGC) fault tolerant control (FTC) scheme for the large-scale systems subject to actuator faults and mismatched interconnection. First, the FTC issues of interconnected systems are converted into a series of near optimal event-triggered control (ETC) methods for isolated subsystems via constructing a modified performance index function of each subsystem. By means of adaptive dynamic programming (ADP) algorithm, the upper bound of performance index function of large-scale systems can be obtained by solving the Hamilton-Jacobi-Bellman (HJB) equation of each auxiliary subsystem. Second, according to the proposed ADP-based decentralized approach and utilizing the event-based synchronous integral reinforcement learning (IRL) algorithm, a model-free guaranteed cost (GC) FTC approach is developed for interconnected large-scale system which can relax the restriction on the condition that system functions must be known. Further, the ultimate uniformly bounded (UUB) stability of auxiliary subsystems can be proved according to the Lyapunov principle. Finally, the effectiveness of the proposed control method is verified by presenting the simulation results.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"615 \",\"pages\":\"Article 128837\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016084\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016084","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文针对存在执行器故障和互联不匹配问题的大型系统,提出了一种新颖的基于数据的分散保证成本(DGC)容错控制(FTC)方案。首先,通过构建每个子系统的修正性能指标函数,将互联系统的 FTC 问题转化为一系列孤立子系统的近优事件触发控制 (ETC) 方法。通过自适应动态编程(ADP)算法,求解各辅助子系统的汉密尔顿-贾可比-贝尔曼(HJB)方程,可获得大规模系统性能指标函数的上界。其次,根据所提出的基于 ADP 的分散方法,并利用基于事件的同步积分强化学习(IRL)算法,为互联大型系统开发了一种无模型保证成本(GC)FTC 方法,该方法可以放宽系统函数必须已知的条件限制。此外,还根据 Lyapunov 原理证明了辅助子系统的终极均匀有界(UUB)稳定性。最后,通过仿真结果验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-triggered explorized IRL-based decentralized fault-tolerant guaranteed cost control for interconnected systems against actuator failures
This paper presents a novel data-based decentralized guaranteed cost (DGC) fault tolerant control (FTC) scheme for the large-scale systems subject to actuator faults and mismatched interconnection. First, the FTC issues of interconnected systems are converted into a series of near optimal event-triggered control (ETC) methods for isolated subsystems via constructing a modified performance index function of each subsystem. By means of adaptive dynamic programming (ADP) algorithm, the upper bound of performance index function of large-scale systems can be obtained by solving the Hamilton-Jacobi-Bellman (HJB) equation of each auxiliary subsystem. Second, according to the proposed ADP-based decentralized approach and utilizing the event-based synchronous integral reinforcement learning (IRL) algorithm, a model-free guaranteed cost (GC) FTC approach is developed for interconnected large-scale system which can relax the restriction on the condition that system functions must be known. Further, the ultimate uniformly bounded (UUB) stability of auxiliary subsystems can be proved according to the Lyapunov principle. Finally, the effectiveness of the proposed control method is verified by presenting the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信