长尾分布下的代币嵌入增强效益参数高效微调

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weiqiu Wang , Zining Chen , Zhicheng Zhao , Fei Su
{"title":"长尾分布下的代币嵌入增强效益参数高效微调","authors":"Weiqiu Wang ,&nbsp;Zining Chen ,&nbsp;Zhicheng Zhao ,&nbsp;Fei Su","doi":"10.1016/j.neucom.2024.128853","DOIUrl":null,"url":null,"abstract":"<div><div>Pre-trained vision-language models, particularly those utilizing CLIP, have advanced various visual tasks. Parameter-Efficient Fine-Tuning (PEFT) on such models is a mainstream trend for downstream tasks. Despite advancements, long-tailed distribution still hampers image recognition performance in current PEFT schemes. Therefore, this paper proposes Token Embeddings Augmentation (TEA) to tackle long-tailed learning under PEFT paradigm. Based on patch token semantic mining, TEA uncovers category-specific semantic details within patch tokens to enhance token embeddings, named Patch-based Embeddings Augmentation (PEA). Then, a Probability Gate (PG) strategy is designed to effectively enrich semantic information of tail categories using enhanced embeddings. A Token Embeddings Consistency (TEC) loss is further introduced to prioritize category semantic information within tokens. Extensive experiments on multiple long-tailed distribution datasets show that our method improves the performance of various PEFT methods with different classification loss functions, especially for tail categories. Our optimal approach achieves the state-of-the-art results on multiple datasets with negligible parameters or inference latency, thus enhancing the practicality of PEFT in long-tailed distributions.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128853"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Token Embeddings Augmentation benefits Parameter-Efficient Fine-Tuning under long-tailed distribution\",\"authors\":\"Weiqiu Wang ,&nbsp;Zining Chen ,&nbsp;Zhicheng Zhao ,&nbsp;Fei Su\",\"doi\":\"10.1016/j.neucom.2024.128853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pre-trained vision-language models, particularly those utilizing CLIP, have advanced various visual tasks. Parameter-Efficient Fine-Tuning (PEFT) on such models is a mainstream trend for downstream tasks. Despite advancements, long-tailed distribution still hampers image recognition performance in current PEFT schemes. Therefore, this paper proposes Token Embeddings Augmentation (TEA) to tackle long-tailed learning under PEFT paradigm. Based on patch token semantic mining, TEA uncovers category-specific semantic details within patch tokens to enhance token embeddings, named Patch-based Embeddings Augmentation (PEA). Then, a Probability Gate (PG) strategy is designed to effectively enrich semantic information of tail categories using enhanced embeddings. A Token Embeddings Consistency (TEC) loss is further introduced to prioritize category semantic information within tokens. Extensive experiments on multiple long-tailed distribution datasets show that our method improves the performance of various PEFT methods with different classification loss functions, especially for tail categories. Our optimal approach achieves the state-of-the-art results on multiple datasets with negligible parameters or inference latency, thus enhancing the practicality of PEFT in long-tailed distributions.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"615 \",\"pages\":\"Article 128853\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016242\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016242","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

预先训练的视觉语言模型,尤其是那些利用 CLIP 的模型,推动了各种视觉任务的发展。对这些模型进行参数高效微调(PEFT)是下游任务的主流趋势。尽管取得了进步,但在当前的 PEFT 方案中,长尾分布仍会影响图像识别性能。因此,本文提出了令牌嵌入增强技术(TEA)来解决 PEFT 范式下的长尾学习问题。TEA 以补丁标记语义挖掘为基础,在补丁标记中发现特定类别的语义细节,从而增强标记嵌入,命名为基于补丁的嵌入增强(PEA)。然后,设计了一种概率门(PG)策略,利用增强嵌入有效地丰富尾部类别的语义信息。还进一步引入了标记嵌入一致性(TEC)损失,以优先处理标记内的类别语义信息。在多个长尾分布数据集上进行的大量实验表明,我们的方法提高了采用不同分类损失函数的各种 PEFT 方法的性能,尤其是在尾部类别方面。我们的最优方法在多个数据集上取得了最先进的结果,其参数或推理延迟可以忽略不计,从而提高了长尾分布中 PEFT 的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Token Embeddings Augmentation benefits Parameter-Efficient Fine-Tuning under long-tailed distribution
Pre-trained vision-language models, particularly those utilizing CLIP, have advanced various visual tasks. Parameter-Efficient Fine-Tuning (PEFT) on such models is a mainstream trend for downstream tasks. Despite advancements, long-tailed distribution still hampers image recognition performance in current PEFT schemes. Therefore, this paper proposes Token Embeddings Augmentation (TEA) to tackle long-tailed learning under PEFT paradigm. Based on patch token semantic mining, TEA uncovers category-specific semantic details within patch tokens to enhance token embeddings, named Patch-based Embeddings Augmentation (PEA). Then, a Probability Gate (PG) strategy is designed to effectively enrich semantic information of tail categories using enhanced embeddings. A Token Embeddings Consistency (TEC) loss is further introduced to prioritize category semantic information within tokens. Extensive experiments on multiple long-tailed distribution datasets show that our method improves the performance of various PEFT methods with different classification loss functions, especially for tail categories. Our optimal approach achieves the state-of-the-art results on multiple datasets with negligible parameters or inference latency, thus enhancing the practicality of PEFT in long-tailed distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信