使用基于修改后 CBAM 的网络,为高光谱图像分类自适应选择光谱空间特征

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
He Fu , Cailing Wang , Zhanlong Chen
{"title":"使用基于修改后 CBAM 的网络,为高光谱图像分类自适应选择光谱空间特征","authors":"He Fu ,&nbsp;Cailing Wang ,&nbsp;Zhanlong Chen","doi":"10.1016/j.neucom.2024.128877","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128877"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network\",\"authors\":\"He Fu ,&nbsp;Cailing Wang ,&nbsp;Zhanlong Chen\",\"doi\":\"10.1016/j.neucom.2024.128877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"615 \",\"pages\":\"Article 128877\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016485\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016485","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)在高光谱图像(HSI)分类中表现出强大的能力。然而,如何根据高光谱图像中不同尺度的信息自适应地调整 CNN 的感受野(RF)大小,以实现光谱空间特征的自适应选择,仍然是一个挑战。在本文中,我们修改了卷积块注意模块(CBAM),并提出了一种基于修改后 CBAM 的网络(MCNet),以自适应地选择频谱空间特征进行人机交互分类。其中,修改后的 CBAM 不仅能使模型根据 HSI 中不同尺度的信息调整其 RF 大小,还能使模型实现对重要光谱和空间特征的联合关注。这对于自适应地选择更具描述性和鉴别性的光谱空间特征非常重要。在印度松树、肯尼迪航天中心、帕维亚大学和博茨瓦纳的 HSI 数据集上,将提出的 MCNet 与目前流行的方法进行了比较。结果表明,在总体准确率、平均准确率和 Kappa 方面,MCNet 的分类结果优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network
Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信