Aryane A. Marciniak , Antonio E.C. Santos , Hugo C. Reis , Evelyn C.S. Santos , Claudio J.A. Mota
{"title":"以 Na 和 CeO2 为促进剂、以 MCM-41 为载体的铁基和钴基催化剂直接氢化 CO2","authors":"Aryane A. Marciniak , Antonio E.C. Santos , Hugo C. Reis , Evelyn C.S. Santos , Claudio J.A. Mota","doi":"10.1016/j.jorganchem.2024.123440","DOIUrl":null,"url":null,"abstract":"<div><div>This contribution has studied iron or cobalt-based Fischer-Tropsch catalysts, promoted with CeO<sub>2</sub> and Na and supported on MCM-41 mesoporous silica in the direct CO<sub>2</sub> hydrogenation to hydrocarbons. The cobalt-based catalyst is more active in the presence of ceria as a promoter, presenting long-chain hydrocarbons under reaction conditions of 350 °C, 40 bar, H<sub>2</sub>/CO<sub>2</sub> = 3, and GHSV = 6000 mL g<sup>-1</sup> h<sup>-1</sup>. The characterization of the catalysts suggests that CoCeNa/M exhibits a strong Co-O-Si bond formation, preventing the cobalt oxide reduction to Co<sup>2+</sup> species, which can be associated with methane production. On the other hand, iron-based catalysts present higher CO and CH<sub>4</sub> concentrations, as shown via in situ DRIFTS, suggesting a possible iron carbide phase, which can be formed by the severe FTS reaction conditions, producing a high concentration of water and competing with Sabatier reaction.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1023 ","pages":"Article 123440"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct CO2 hydrogenation over Na and CeO2-promoted Iron and Cobalt-based Catalysts Supported on MCM-41\",\"authors\":\"Aryane A. Marciniak , Antonio E.C. Santos , Hugo C. Reis , Evelyn C.S. Santos , Claudio J.A. Mota\",\"doi\":\"10.1016/j.jorganchem.2024.123440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This contribution has studied iron or cobalt-based Fischer-Tropsch catalysts, promoted with CeO<sub>2</sub> and Na and supported on MCM-41 mesoporous silica in the direct CO<sub>2</sub> hydrogenation to hydrocarbons. The cobalt-based catalyst is more active in the presence of ceria as a promoter, presenting long-chain hydrocarbons under reaction conditions of 350 °C, 40 bar, H<sub>2</sub>/CO<sub>2</sub> = 3, and GHSV = 6000 mL g<sup>-1</sup> h<sup>-1</sup>. The characterization of the catalysts suggests that CoCeNa/M exhibits a strong Co-O-Si bond formation, preventing the cobalt oxide reduction to Co<sup>2+</sup> species, which can be associated with methane production. On the other hand, iron-based catalysts present higher CO and CH<sub>4</sub> concentrations, as shown via in situ DRIFTS, suggesting a possible iron carbide phase, which can be formed by the severe FTS reaction conditions, producing a high concentration of water and competing with Sabatier reaction.</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":\"1023 \",\"pages\":\"Article 123440\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X24004352\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24004352","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Direct CO2 hydrogenation over Na and CeO2-promoted Iron and Cobalt-based Catalysts Supported on MCM-41
This contribution has studied iron or cobalt-based Fischer-Tropsch catalysts, promoted with CeO2 and Na and supported on MCM-41 mesoporous silica in the direct CO2 hydrogenation to hydrocarbons. The cobalt-based catalyst is more active in the presence of ceria as a promoter, presenting long-chain hydrocarbons under reaction conditions of 350 °C, 40 bar, H2/CO2 = 3, and GHSV = 6000 mL g-1 h-1. The characterization of the catalysts suggests that CoCeNa/M exhibits a strong Co-O-Si bond formation, preventing the cobalt oxide reduction to Co2+ species, which can be associated with methane production. On the other hand, iron-based catalysts present higher CO and CH4 concentrations, as shown via in situ DRIFTS, suggesting a possible iron carbide phase, which can be formed by the severe FTS reaction conditions, producing a high concentration of water and competing with Sabatier reaction.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.