Qihuan Zhang , Ziteng Wang , Min Huang , Huihui Wang , Xingwei Wang , Shu-Cherng Fang
{"title":"需求不确定情况下的协同供应链网络设计:稳健优化方法","authors":"Qihuan Zhang , Ziteng Wang , Min Huang , Huihui Wang , Xingwei Wang , Shu-Cherng Fang","doi":"10.1016/j.ijpe.2024.109465","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies a collaborative robust supply chain network design (CRSCND) problem aimed at maximizing economic and social benefits by enabling enterprises to jointly address demand uncertainties. Through strategies including joint inventory replenishment, shared distribution centers (DCs), and pooled transportation resources, the CRSCND problem seeks to optimize plant and DC locations and the allocation of DCs to customers under a collaborative framework. To address this, we develop two robust optimization models incorporating a budget uncertainty set, each model representing a distinct risk-pooling policy. These models are then reformulated into solvable linear programming structures. Results from numerical experiments confirm the cost-reduction benefits of collaboration and robust optimization. Sensitivity analysis reveals that factors like violated probability and high demand volatility minimally impact cost savings enabled by collaboration and robustness. Moreover, each robust model shows distinct suitability depending on specific scenario parameters. Finally, we test three cost-saving allocation mechanisms, finding that only the Shapley value method yields best allocations in cases involving overlapping demand.</div></div>","PeriodicalId":14287,"journal":{"name":"International Journal of Production Economics","volume":"279 ","pages":"Article 109465"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative supply chain network design under demand uncertainty: A robust optimization approach\",\"authors\":\"Qihuan Zhang , Ziteng Wang , Min Huang , Huihui Wang , Xingwei Wang , Shu-Cherng Fang\",\"doi\":\"10.1016/j.ijpe.2024.109465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies a collaborative robust supply chain network design (CRSCND) problem aimed at maximizing economic and social benefits by enabling enterprises to jointly address demand uncertainties. Through strategies including joint inventory replenishment, shared distribution centers (DCs), and pooled transportation resources, the CRSCND problem seeks to optimize plant and DC locations and the allocation of DCs to customers under a collaborative framework. To address this, we develop two robust optimization models incorporating a budget uncertainty set, each model representing a distinct risk-pooling policy. These models are then reformulated into solvable linear programming structures. Results from numerical experiments confirm the cost-reduction benefits of collaboration and robust optimization. Sensitivity analysis reveals that factors like violated probability and high demand volatility minimally impact cost savings enabled by collaboration and robustness. Moreover, each robust model shows distinct suitability depending on specific scenario parameters. Finally, we test three cost-saving allocation mechanisms, finding that only the Shapley value method yields best allocations in cases involving overlapping demand.</div></div>\",\"PeriodicalId\":14287,\"journal\":{\"name\":\"International Journal of Production Economics\",\"volume\":\"279 \",\"pages\":\"Article 109465\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Production Economics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925527324003220\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Economics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925527324003220","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Collaborative supply chain network design under demand uncertainty: A robust optimization approach
This paper studies a collaborative robust supply chain network design (CRSCND) problem aimed at maximizing economic and social benefits by enabling enterprises to jointly address demand uncertainties. Through strategies including joint inventory replenishment, shared distribution centers (DCs), and pooled transportation resources, the CRSCND problem seeks to optimize plant and DC locations and the allocation of DCs to customers under a collaborative framework. To address this, we develop two robust optimization models incorporating a budget uncertainty set, each model representing a distinct risk-pooling policy. These models are then reformulated into solvable linear programming structures. Results from numerical experiments confirm the cost-reduction benefits of collaboration and robust optimization. Sensitivity analysis reveals that factors like violated probability and high demand volatility minimally impact cost savings enabled by collaboration and robustness. Moreover, each robust model shows distinct suitability depending on specific scenario parameters. Finally, we test three cost-saving allocation mechanisms, finding that only the Shapley value method yields best allocations in cases involving overlapping demand.
期刊介绍:
The International Journal of Production Economics focuses on the interface between engineering and management. It covers all aspects of manufacturing and process industries, as well as production in general. The journal is interdisciplinary, considering activities throughout the product life cycle and material flow cycle. It aims to disseminate knowledge for improving industrial practice and strengthening the theoretical base for decision making. The journal serves as a forum for exchanging ideas and presenting new developments in theory and application, combining academic standards with practical value for industrial applications.