HOI-V:基于视频多特征融合的单阶段人-物互动检测

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Dongzhou Gu , Kaihua Huang , Shiwei Ma , Jiang Liu
{"title":"HOI-V:基于视频多特征融合的单阶段人-物互动检测","authors":"Dongzhou Gu ,&nbsp;Kaihua Huang ,&nbsp;Shiwei Ma ,&nbsp;Jiang Liu","doi":"10.1016/j.image.2024.117224","DOIUrl":null,"url":null,"abstract":"<div><div>Effective detection of Human-Object Interaction (HOI) is important for machine understanding of real-world scenarios. Nowadays, image-based HOI detection has been abundantly investigated, and recent one-stage methods strike a balance between accuracy and efficiency. However, it is difficult to predict temporal-aware interaction actions from static images since limited temporal context information is introduced. Meanwhile, due to the lack of early large-scale video HOI datasets and the high computational cost of spatial-temporal HOI model training, recent exploratory studies mostly follow a two-stage paradigm, but independent object detection and interaction recognition still suffer from computational redundancy and independent optimization. Therefore, inspired by the one-stage interaction point detection framework, a one-stage spatial-temporal HOI detection baseline is proposed in this paper, in which the short-term local motion features and long-term temporal context features are obtained by the proposed temporal differential excitation module (TDEM) and DLA-TSM backbone. Complementary visual features between multiple clips are then extracted by multi-feature fusion and fed into the parallel detection branches. Finally, a video dataset containing only actions with reduced data size (HOI-V) is constructed to motivate further research on end-to-end video HOI detection. Extensive experiments are also conducted to verify the validity of our proposed baseline.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"130 ","pages":"Article 117224"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos\",\"authors\":\"Dongzhou Gu ,&nbsp;Kaihua Huang ,&nbsp;Shiwei Ma ,&nbsp;Jiang Liu\",\"doi\":\"10.1016/j.image.2024.117224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective detection of Human-Object Interaction (HOI) is important for machine understanding of real-world scenarios. Nowadays, image-based HOI detection has been abundantly investigated, and recent one-stage methods strike a balance between accuracy and efficiency. However, it is difficult to predict temporal-aware interaction actions from static images since limited temporal context information is introduced. Meanwhile, due to the lack of early large-scale video HOI datasets and the high computational cost of spatial-temporal HOI model training, recent exploratory studies mostly follow a two-stage paradigm, but independent object detection and interaction recognition still suffer from computational redundancy and independent optimization. Therefore, inspired by the one-stage interaction point detection framework, a one-stage spatial-temporal HOI detection baseline is proposed in this paper, in which the short-term local motion features and long-term temporal context features are obtained by the proposed temporal differential excitation module (TDEM) and DLA-TSM backbone. Complementary visual features between multiple clips are then extracted by multi-feature fusion and fed into the parallel detection branches. Finally, a video dataset containing only actions with reduced data size (HOI-V) is constructed to motivate further research on end-to-end video HOI detection. Extensive experiments are also conducted to verify the validity of our proposed baseline.</div></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"130 \",\"pages\":\"Article 117224\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524001255\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001255","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

有效的人-物交互(HOI)检测对于机器理解真实世界场景非常重要。目前,基于图像的 HOI 检测已得到广泛研究,最近的单阶段方法在准确性和效率之间取得了平衡。然而,由于引入的时间上下文信息有限,因此很难从静态图像中预测时间感知的交互行为。同时,由于早期大规模视频 HOI 数据集的缺乏以及时空 HOI 模型训练的计算成本较高,近年来的探索性研究大多采用两阶段范式,但独立的对象检测和交互识别仍存在计算冗余和独立优化的问题。因此,受单级交互点检测框架的启发,本文提出了单级时空 HOI 检测基线,其中短期局部运动特征和长期时空上下文特征由提出的时差激励模块(TDEM)和 DLA-TSM 骨干模块获得。然后,通过多特征融合提取多个片段之间的互补视觉特征,并将其输入并行检测分支。最后,我们构建了一个视频数据集,其中只包含数据量较小的动作(HOI-V),以激励对端到端视频 HOI 检测的进一步研究。我们还进行了广泛的实验,以验证我们提出的基线的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos
Effective detection of Human-Object Interaction (HOI) is important for machine understanding of real-world scenarios. Nowadays, image-based HOI detection has been abundantly investigated, and recent one-stage methods strike a balance between accuracy and efficiency. However, it is difficult to predict temporal-aware interaction actions from static images since limited temporal context information is introduced. Meanwhile, due to the lack of early large-scale video HOI datasets and the high computational cost of spatial-temporal HOI model training, recent exploratory studies mostly follow a two-stage paradigm, but independent object detection and interaction recognition still suffer from computational redundancy and independent optimization. Therefore, inspired by the one-stage interaction point detection framework, a one-stage spatial-temporal HOI detection baseline is proposed in this paper, in which the short-term local motion features and long-term temporal context features are obtained by the proposed temporal differential excitation module (TDEM) and DLA-TSM backbone. Complementary visual features between multiple clips are then extracted by multi-feature fusion and fed into the parallel detection branches. Finally, a video dataset containing only actions with reduced data size (HOI-V) is constructed to motivate further research on end-to-end video HOI detection. Extensive experiments are also conducted to verify the validity of our proposed baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信