双曲空间的嵌入和近邻搜索与恒定加性误差

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Eunku Park, Antoine Vigneron
{"title":"双曲空间的嵌入和近邻搜索与恒定加性误差","authors":"Eunku Park,&nbsp;Antoine Vigneron","doi":"10.1016/j.comgeo.2024.102150","DOIUrl":null,"url":null,"abstract":"<div><div>We give an embedding of the Poincaré halfspace <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> into a discrete metric space based on a binary tiling of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span>, with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>. It yields the following results. We show that any subset <em>P</em> of <em>n</em> points in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> can be embedded into a graph-metric with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> vertices and edges, and with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>. We also show how to construct, for any <em>k</em>, an <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>-purely additive spanner of <em>P</em> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> Steiner vertices and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mo>⋅</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>k</em>th-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for <em>P</em> of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span>. It allows us to answer approximate near-neighbor queries in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>O</mi><mo>(</mo><mi>D</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, with additive error <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>. These constructions can be done in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi></math></span> time.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"126 ","pages":"Article 102150"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embeddings and near-neighbor searching with constant additive error for hyperbolic spaces\",\"authors\":\"Eunku Park,&nbsp;Antoine Vigneron\",\"doi\":\"10.1016/j.comgeo.2024.102150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give an embedding of the Poincaré halfspace <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> into a discrete metric space based on a binary tiling of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span>, with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>. It yields the following results. We show that any subset <em>P</em> of <em>n</em> points in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> can be embedded into a graph-metric with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> vertices and edges, and with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>. We also show how to construct, for any <em>k</em>, an <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>-purely additive spanner of <em>P</em> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> Steiner vertices and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mo>⋅</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>k</em>th-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for <em>P</em> of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span>. It allows us to answer approximate near-neighbor queries in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>O</mi><mo>(</mo><mi>D</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, with additive error <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>D</mi><mo>)</mo></math></span>. These constructions can be done in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi></math></span> time.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"126 \",\"pages\":\"Article 102150\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000725\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000725","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一种基于二元平铺的离散度量空间 HD 的嵌入方法,其附加变形为 O(logD)。它产生了以下结果。我们证明,HD 中任何 n 个点的子集 P 都可以嵌入到一个具有 2O(D)n 个顶点和边的图度量空间中,其附加变形为 O(logD)。我们还展示了如何为任意 k 构建 P 的 O(klogD)-purely additive spanner,该 spanner 具有 2O(D)n 个 Steiner 顶点和 2O(D)n⋅λk(n) 条边,其中 λk(n) 是第 k 行逆阿克曼函数。最后,我们展示了如何为 P 构建大小为 2O(D)n 的近似 Voronoi 图。它允许我们在 2O(D)+O(Dlogn) 时间内回答近似近邻查询,加法误差为 O(logD)。这些构造可以在 2O(D)nlogn 时间内完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embeddings and near-neighbor searching with constant additive error for hyperbolic spaces
We give an embedding of the Poincaré halfspace HD into a discrete metric space based on a binary tiling of HD, with additive distortion O(logD). It yields the following results. We show that any subset P of n points in HD can be embedded into a graph-metric with 2O(D)n vertices and edges, and with additive distortion O(logD). We also show how to construct, for any k, an O(klogD)-purely additive spanner of P with 2O(D)n Steiner vertices and 2O(D)nλk(n) edges, where λk(n) is the kth-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for P of size 2O(D)n. It allows us to answer approximate near-neighbor queries in 2O(D)+O(Dlogn) time, with additive error O(logD). These constructions can be done in 2O(D)nlogn time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信