{"title":"双曲空间的嵌入和近邻搜索与恒定加性误差","authors":"Eunku Park, Antoine Vigneron","doi":"10.1016/j.comgeo.2024.102150","DOIUrl":null,"url":null,"abstract":"<div><div>We give an embedding of the Poincaré halfspace <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> into a discrete metric space based on a binary tiling of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span>, with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. It yields the following results. We show that any subset <em>P</em> of <em>n</em> points in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> can be embedded into a graph-metric with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> vertices and edges, and with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. We also show how to construct, for any <em>k</em>, an <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>-purely additive spanner of <em>P</em> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> Steiner vertices and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mo>⋅</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>k</em>th-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for <em>P</em> of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span>. It allows us to answer approximate near-neighbor queries in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>O</mi><mo>(</mo><mi>D</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, with additive error <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. These constructions can be done in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi></math></span> time.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"126 ","pages":"Article 102150"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embeddings and near-neighbor searching with constant additive error for hyperbolic spaces\",\"authors\":\"Eunku Park, Antoine Vigneron\",\"doi\":\"10.1016/j.comgeo.2024.102150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give an embedding of the Poincaré halfspace <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> into a discrete metric space based on a binary tiling of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span>, with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. It yields the following results. We show that any subset <em>P</em> of <em>n</em> points in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> can be embedded into a graph-metric with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> vertices and edges, and with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. We also show how to construct, for any <em>k</em>, an <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>-purely additive spanner of <em>P</em> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> Steiner vertices and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mo>⋅</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>k</em>th-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for <em>P</em> of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span>. It allows us to answer approximate near-neighbor queries in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>O</mi><mo>(</mo><mi>D</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, with additive error <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. These constructions can be done in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi></math></span> time.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"126 \",\"pages\":\"Article 102150\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000725\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000725","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了一种基于二元平铺的离散度量空间 HD 的嵌入方法,其附加变形为 O(logD)。它产生了以下结果。我们证明,HD 中任何 n 个点的子集 P 都可以嵌入到一个具有 2O(D)n 个顶点和边的图度量空间中,其附加变形为 O(logD)。我们还展示了如何为任意 k 构建 P 的 O(klogD)-purely additive spanner,该 spanner 具有 2O(D)n 个 Steiner 顶点和 2O(D)n⋅λk(n) 条边,其中 λk(n) 是第 k 行逆阿克曼函数。最后,我们展示了如何为 P 构建大小为 2O(D)n 的近似 Voronoi 图。它允许我们在 2O(D)+O(Dlogn) 时间内回答近似近邻查询,加法误差为 O(logD)。这些构造可以在 2O(D)nlogn 时间内完成。
Embeddings and near-neighbor searching with constant additive error for hyperbolic spaces
We give an embedding of the Poincaré halfspace into a discrete metric space based on a binary tiling of , with additive distortion . It yields the following results. We show that any subset P of n points in can be embedded into a graph-metric with vertices and edges, and with additive distortion . We also show how to construct, for any k, an -purely additive spanner of P with Steiner vertices and edges, where is the kth-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for P of size . It allows us to answer approximate near-neighbor queries in time, with additive error . These constructions can be done in time.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.