Yajun Wu , Jinjin Wu , Yitian Lu , Xudong Zhang , Chau Nguyen Xuan Quang
{"title":"真空预加载与间歇气囊加压相结合处理疏浚污泥的试验研究","authors":"Yajun Wu , Jinjin Wu , Yitian Lu , Xudong Zhang , Chau Nguyen Xuan Quang","doi":"10.1016/j.geotexmem.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>The PVD-vacuum preloading method combined with airbags is a new soft ground treatment technology that can provide additional consolidation pressure and reduce lateral deformation towards the improvement area caused by traditional PVD-vacuum preloading. However, continuous airbag pressurization tends to create large cavities in the soil, and the optimal timing for airbag loading is also unclear. To address the aforementioned issues, this paper proposes an intermittent airbag pressurization method, adding small-diameter airbags between adjacent PVDs and intermittently inflating the airbags. Through indoor model test, the water discharge characteristics, improvement effect, improvement mechanism, and foundation settlement characteristics under intermittent airbag pressure were studied, proving that intermittent airbag pressure can significantly reduce early soil rebound. A calculation method for the airbag expansion diameter was proposed, and its feasibility was verified through experimental results. Finally, the optimal time period for intermittent airbag loading was clarified.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 366-377"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on vacuum preloading combined with intermittent airbag pressurization for treating dredged sludge\",\"authors\":\"Yajun Wu , Jinjin Wu , Yitian Lu , Xudong Zhang , Chau Nguyen Xuan Quang\",\"doi\":\"10.1016/j.geotexmem.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The PVD-vacuum preloading method combined with airbags is a new soft ground treatment technology that can provide additional consolidation pressure and reduce lateral deformation towards the improvement area caused by traditional PVD-vacuum preloading. However, continuous airbag pressurization tends to create large cavities in the soil, and the optimal timing for airbag loading is also unclear. To address the aforementioned issues, this paper proposes an intermittent airbag pressurization method, adding small-diameter airbags between adjacent PVDs and intermittently inflating the airbags. Through indoor model test, the water discharge characteristics, improvement effect, improvement mechanism, and foundation settlement characteristics under intermittent airbag pressure were studied, proving that intermittent airbag pressure can significantly reduce early soil rebound. A calculation method for the airbag expansion diameter was proposed, and its feasibility was verified through experimental results. Finally, the optimal time period for intermittent airbag loading was clarified.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 366-377\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114424001262\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424001262","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental study on vacuum preloading combined with intermittent airbag pressurization for treating dredged sludge
The PVD-vacuum preloading method combined with airbags is a new soft ground treatment technology that can provide additional consolidation pressure and reduce lateral deformation towards the improvement area caused by traditional PVD-vacuum preloading. However, continuous airbag pressurization tends to create large cavities in the soil, and the optimal timing for airbag loading is also unclear. To address the aforementioned issues, this paper proposes an intermittent airbag pressurization method, adding small-diameter airbags between adjacent PVDs and intermittently inflating the airbags. Through indoor model test, the water discharge characteristics, improvement effect, improvement mechanism, and foundation settlement characteristics under intermittent airbag pressure were studied, proving that intermittent airbag pressure can significantly reduce early soil rebound. A calculation method for the airbag expansion diameter was proposed, and its feasibility was verified through experimental results. Finally, the optimal time period for intermittent airbag loading was clarified.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.