随机和相关患者需求下分布稳健的医院扩容规划

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Aliaa Alnaggar, Fatimah Faiza Farrukh
{"title":"随机和相关患者需求下分布稳健的医院扩容规划","authors":"Aliaa Alnaggar,&nbsp;Fatimah Faiza Farrukh","doi":"10.1016/j.cor.2024.106887","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the optimal locations and capacities of hospital expansion facilities under uncertain future patient demands, considering both spatial and temporal correlations. We propose a novel two-stage distributionally robust optimization (DRO) model that integrates a Spatio-Temporal Neural Network (STNN). Specifically, we develop an STNN model that predicts future hospital occupancy levels considering spatial and temporal patterns in time-series datasets over a network of hospitals. The predictions of the STNN model are then used in the construction of the ambiguity set of the DRO model. To address computational challenges associated with two-stage DRO, we employ the linear-decision-rules technique to derive a tractable mixed-integer linear programming approximation. Extensive computational experiments conducted on real-world data demonstrate the superiority of the STNN model in minimizing forecast errors. Compared to neural network models built for each individual hospital, the proposed STNN model achieves a 53% improvement in average root mean square error. Furthermore, the results demonstrate the value of incorporating spatiotemporal dependencies of demand uncertainty in the DRO model, as evidenced by out-of-sample analysis conducted with both ground truth data and under perfect information scenarios.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"174 ","pages":"Article 106887"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally robust hospital capacity expansion planning under stochastic and correlated patient demand\",\"authors\":\"Aliaa Alnaggar,&nbsp;Fatimah Faiza Farrukh\",\"doi\":\"10.1016/j.cor.2024.106887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the optimal locations and capacities of hospital expansion facilities under uncertain future patient demands, considering both spatial and temporal correlations. We propose a novel two-stage distributionally robust optimization (DRO) model that integrates a Spatio-Temporal Neural Network (STNN). Specifically, we develop an STNN model that predicts future hospital occupancy levels considering spatial and temporal patterns in time-series datasets over a network of hospitals. The predictions of the STNN model are then used in the construction of the ambiguity set of the DRO model. To address computational challenges associated with two-stage DRO, we employ the linear-decision-rules technique to derive a tractable mixed-integer linear programming approximation. Extensive computational experiments conducted on real-world data demonstrate the superiority of the STNN model in minimizing forecast errors. Compared to neural network models built for each individual hospital, the proposed STNN model achieves a 53% improvement in average root mean square error. Furthermore, the results demonstrate the value of incorporating spatiotemporal dependencies of demand uncertainty in the DRO model, as evidenced by out-of-sample analysis conducted with both ground truth data and under perfect information scenarios.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"174 \",\"pages\":\"Article 106887\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054824003599\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在未来病人需求不确定的情况下,考虑空间和时间相关性,医院扩建设施的最佳位置和容量。我们提出了一种整合了时空神经网络(STNN)的新型两阶段分布稳健优化(DRO)模型。具体来说,我们开发了一个 STNN 模型,该模型可预测未来医院入住率水平,同时考虑医院网络时间序列数据集的空间和时间模式。STNN 模型的预测结果将用于构建 DRO 模型的模糊集。为了解决与两阶段 DRO 相关的计算难题,我们采用了线性决策规则技术,推导出了一种可行的混合整数线性规划近似方法。在真实世界数据上进行的大量计算实验证明,STNN 模型在最小化预测误差方面具有优势。与针对每家医院建立的神经网络模型相比,所提出的 STNN 模型在平均均方根误差方面提高了 53%。此外,结果还证明了将需求不确定性的时空依赖性纳入 DRO 模型的价值,这一点在使用地面实况数据和完美信息情景下进行的样本外分析中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally robust hospital capacity expansion planning under stochastic and correlated patient demand
This paper investigates the optimal locations and capacities of hospital expansion facilities under uncertain future patient demands, considering both spatial and temporal correlations. We propose a novel two-stage distributionally robust optimization (DRO) model that integrates a Spatio-Temporal Neural Network (STNN). Specifically, we develop an STNN model that predicts future hospital occupancy levels considering spatial and temporal patterns in time-series datasets over a network of hospitals. The predictions of the STNN model are then used in the construction of the ambiguity set of the DRO model. To address computational challenges associated with two-stage DRO, we employ the linear-decision-rules technique to derive a tractable mixed-integer linear programming approximation. Extensive computational experiments conducted on real-world data demonstrate the superiority of the STNN model in minimizing forecast errors. Compared to neural network models built for each individual hospital, the proposed STNN model achieves a 53% improvement in average root mean square error. Furthermore, the results demonstrate the value of incorporating spatiotemporal dependencies of demand uncertainty in the DRO model, as evidenced by out-of-sample analysis conducted with both ground truth data and under perfect information scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信