以数据为驱动,预测稳健组合优化的相关方案

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Marc Goerigk , Jannis Kurtz
{"title":"以数据为驱动,预测稳健组合优化的相关方案","authors":"Marc Goerigk ,&nbsp;Jannis Kurtz","doi":"10.1016/j.cor.2024.106886","DOIUrl":null,"url":null,"abstract":"<div><div>We study iterative constraint and variable generation methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. The goal of this work is to find a set of starting scenarios that provides strong lower bounds early in the process. To this end we define the <em>Relevant Scenario Recognition Problem</em> (RSRP) which finds the optimal choice of scenarios which maximizes the corresponding objective value. We show for classical and two-stage robust optimization that this problem can be solved in polynomial time if the number of selected scenarios is constant and NP-hard if it is part of the input. Furthermore, we derive a linear mixed-integer programming formulation for the problem in both cases.</div><div>Since solving the RSRP is not possible in reasonable time, we propose a machine-learning-based heuristic to determine a good set of starting scenarios. To this end, we design a set of dimension-independent features, and train a Random Forest Classifier on already solved small-dimensional instances of the problem. Our experiments show that our method is able to improve the solution process even for larger instances than contained in the training set, and that predicting even a small number of good starting scenarios can considerably reduce the optimality gap. Additionally, our method provides a feature importance score which can give new insights into the role of scenario properties in robust optimization.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"174 ","pages":"Article 106886"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven prediction of relevant scenarios for robust combinatorial optimization\",\"authors\":\"Marc Goerigk ,&nbsp;Jannis Kurtz\",\"doi\":\"10.1016/j.cor.2024.106886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study iterative constraint and variable generation methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. The goal of this work is to find a set of starting scenarios that provides strong lower bounds early in the process. To this end we define the <em>Relevant Scenario Recognition Problem</em> (RSRP) which finds the optimal choice of scenarios which maximizes the corresponding objective value. We show for classical and two-stage robust optimization that this problem can be solved in polynomial time if the number of selected scenarios is constant and NP-hard if it is part of the input. Furthermore, we derive a linear mixed-integer programming formulation for the problem in both cases.</div><div>Since solving the RSRP is not possible in reasonable time, we propose a machine-learning-based heuristic to determine a good set of starting scenarios. To this end, we design a set of dimension-independent features, and train a Random Forest Classifier on already solved small-dimensional instances of the problem. Our experiments show that our method is able to improve the solution process even for larger instances than contained in the training set, and that predicting even a small number of good starting scenarios can considerably reduce the optimality gap. Additionally, our method provides a feature importance score which can give new insights into the role of scenario properties in robust optimization.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"174 \",\"pages\":\"Article 106886\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054824003587\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003587","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有离散不确定性的(两阶段)鲁棒性组合优化问题的迭代约束和变量生成方法。这项工作的目标是找到一组起始方案,以便在优化过程的早期提供较强的下限。为此,我们定义了相关方案识别问题 (RSRP),该问题可找到能使相应目标值最大化的最佳方案选择。我们针对经典优化和两阶段鲁棒优化证明,如果所选方案的数量是常数,则该问题可以在多项式时间内求解;如果方案数量是输入的一部分,则该问题可以在 NP 难度内求解。由于无法在合理时间内求解 RSRP,我们提出了一种基于机器学习的启发式方法,以确定一组好的起始方案。为此,我们设计了一组与维度无关的特征,并在已解决的小维度问题实例上训练随机森林分类器。我们的实验表明,即使对于比训练集更大的实例,我们的方法也能改进求解过程,而且即使预测少量良好的起始方案,也能大大缩小优化差距。此外,我们的方法还提供了一个特征重要性评分,可以让人们对情景属性在稳健优化中的作用有新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven prediction of relevant scenarios for robust combinatorial optimization
We study iterative constraint and variable generation methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. The goal of this work is to find a set of starting scenarios that provides strong lower bounds early in the process. To this end we define the Relevant Scenario Recognition Problem (RSRP) which finds the optimal choice of scenarios which maximizes the corresponding objective value. We show for classical and two-stage robust optimization that this problem can be solved in polynomial time if the number of selected scenarios is constant and NP-hard if it is part of the input. Furthermore, we derive a linear mixed-integer programming formulation for the problem in both cases.
Since solving the RSRP is not possible in reasonable time, we propose a machine-learning-based heuristic to determine a good set of starting scenarios. To this end, we design a set of dimension-independent features, and train a Random Forest Classifier on already solved small-dimensional instances of the problem. Our experiments show that our method is able to improve the solution process even for larger instances than contained in the training set, and that predicting even a small number of good starting scenarios can considerably reduce the optimality gap. Additionally, our method provides a feature importance score which can give new insights into the role of scenario properties in robust optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信