用于高光谱混合的多域双流网络

IF 7.6 Q1 REMOTE SENSING
Jiwei Hu , Tianhao Wang , Qiwen Jin , Chengli Peng , Quan Liu
{"title":"用于高光谱混合的多域双流网络","authors":"Jiwei Hu ,&nbsp;Tianhao Wang ,&nbsp;Qiwen Jin ,&nbsp;Chengli Peng ,&nbsp;Quan Liu","doi":"10.1016/j.jag.2024.104247","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperspectral unmixing is of vital importance within the realm of hyperspectral analysis, which is aimed to decide the fractional proportion (abundances) of fundamental spectral signatures (endmembers) at a subpixel level. Unsupervised unmixing techniques that employ autoencoder (AE) network have gained significant attention for its exceptional feature extraction capabilities. However, traditional AE-based methods lean towards focusing excessively on the information of spectral dimension in the data, resulting in limited ability to extract endmembers with meaningful physical interpretations, and achieve uncompetitive performance. In this paper, we propose a novel multi-domain dual-stream network, called MdsNet, which enhances performance by incorporating high-rank spatial information to guide the unmixing process. This approach allows us to uncover pure endmember data that is hidden within the original hyperspectral image (HSI). We first apply superpixel segmentation and smoothing operations as preprocessing steps to transform the HSI into a coarse domain. Then, MdsNet efficiently handles multi-domain data and employs attention generated from the approximate domain to learn meaningful information about the endmembers’ physical characteristic. Experimental results and ablation studies conducted on Synthetic and real datasets (Samson, Japser, Urban) outperform state-of-the-art techniques by more than 10% in terms of root mean squared error and spectral angle distance, illustrating the effectiveness and superiority of our proposed method. The source code is available at <span><span>https://github.com/qiwenjjin/JAG-MdsNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"135 ","pages":"Article 104247"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-domain dual-stream network for hyperspectral unmixing\",\"authors\":\"Jiwei Hu ,&nbsp;Tianhao Wang ,&nbsp;Qiwen Jin ,&nbsp;Chengli Peng ,&nbsp;Quan Liu\",\"doi\":\"10.1016/j.jag.2024.104247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hyperspectral unmixing is of vital importance within the realm of hyperspectral analysis, which is aimed to decide the fractional proportion (abundances) of fundamental spectral signatures (endmembers) at a subpixel level. Unsupervised unmixing techniques that employ autoencoder (AE) network have gained significant attention for its exceptional feature extraction capabilities. However, traditional AE-based methods lean towards focusing excessively on the information of spectral dimension in the data, resulting in limited ability to extract endmembers with meaningful physical interpretations, and achieve uncompetitive performance. In this paper, we propose a novel multi-domain dual-stream network, called MdsNet, which enhances performance by incorporating high-rank spatial information to guide the unmixing process. This approach allows us to uncover pure endmember data that is hidden within the original hyperspectral image (HSI). We first apply superpixel segmentation and smoothing operations as preprocessing steps to transform the HSI into a coarse domain. Then, MdsNet efficiently handles multi-domain data and employs attention generated from the approximate domain to learn meaningful information about the endmembers’ physical characteristic. Experimental results and ablation studies conducted on Synthetic and real datasets (Samson, Japser, Urban) outperform state-of-the-art techniques by more than 10% in terms of root mean squared error and spectral angle distance, illustrating the effectiveness and superiority of our proposed method. The source code is available at <span><span>https://github.com/qiwenjjin/JAG-MdsNet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"135 \",\"pages\":\"Article 104247\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224006034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

高光谱非混合技术在高光谱分析领域至关重要,其目的是在亚像素级别确定基本光谱特征(内成员)的分数比例(丰度)。采用自动编码器(AE)网络的无监督非混合技术因其卓越的特征提取能力而备受关注。然而,传统的基于自动编码器的方法过分关注数据中的光谱维度信息,导致提取有意义的物理解释的内涵的能力有限,性能也不具竞争力。在本文中,我们提出了一种新颖的多域双流网络,称为 MdsNet,它通过结合高阶空间信息来指导解混合过程,从而提高了性能。通过这种方法,我们可以发现隐藏在原始高光谱图像(HSI)中的纯内含数据。我们首先应用超像素分割和平滑操作作为预处理步骤,将高光谱图像转换为粗域。然后,MdsNet 高效地处理多域数据,并利用近似域产生的注意力来学习有关内成员物理特征的有意义信息。在合成数据集和真实数据集(Samson、Japser、Urban)上进行的实验结果和消融研究在均方根误差和频谱角距离方面优于最先进技术 10%以上,这说明了我们提出的方法的有效性和优越性。源代码见 https://github.com/qiwenjjin/JAG-MdsNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-domain dual-stream network for hyperspectral unmixing
Hyperspectral unmixing is of vital importance within the realm of hyperspectral analysis, which is aimed to decide the fractional proportion (abundances) of fundamental spectral signatures (endmembers) at a subpixel level. Unsupervised unmixing techniques that employ autoencoder (AE) network have gained significant attention for its exceptional feature extraction capabilities. However, traditional AE-based methods lean towards focusing excessively on the information of spectral dimension in the data, resulting in limited ability to extract endmembers with meaningful physical interpretations, and achieve uncompetitive performance. In this paper, we propose a novel multi-domain dual-stream network, called MdsNet, which enhances performance by incorporating high-rank spatial information to guide the unmixing process. This approach allows us to uncover pure endmember data that is hidden within the original hyperspectral image (HSI). We first apply superpixel segmentation and smoothing operations as preprocessing steps to transform the HSI into a coarse domain. Then, MdsNet efficiently handles multi-domain data and employs attention generated from the approximate domain to learn meaningful information about the endmembers’ physical characteristic. Experimental results and ablation studies conducted on Synthetic and real datasets (Samson, Japser, Urban) outperform state-of-the-art techniques by more than 10% in terms of root mean squared error and spectral angle distance, illustrating the effectiveness and superiority of our proposed method. The source code is available at https://github.com/qiwenjjin/JAG-MdsNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信