{"title":"RNC-DP:结合路网约束和 GAN 的个性化轨迹数据发布方案","authors":"Hui Wang , Haiyang Li , Zihao Shen , Peiqian Liu","doi":"10.1016/j.future.2024.107589","DOIUrl":null,"url":null,"abstract":"<div><div>The popularity of location-based services facilitates people’s lives to a certain extent and generates a large amount of trajectory data. Analyzing these data can contribute to society’s development and provide better location services for users, but it also faces the security problem of personal trajectory privacy leakage. However, existing methods often suffer from either excessive privacy protection or insufficient protection of individual privacy. Therefore, this paper proposes a personalized trajectory data publishing scheme combining road network constraints and GAN (RNC-DP). Firstly, after grid-representing the trajectory data, we remove the unreachable grids and define a trajectory generation constraint. Second, the proposed TraGM model synthesizes the trajectory data to meet the constraints. Again, during the trajectory data publishing process, the proposed TraDP mechanism performs k-means clustering on the synthesized trajectories and assigns appropriate privacy budgets to the clustered generalized trajectory location points. Finally, the protected trajectory data is published. Compared with the existing schemes, the proposed scheme improves privacy protection strength by 10.2%–41.2% while balancing data availability and has low time complexity.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107589"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNC-DP: A personalized trajectory data publishing scheme combining road network constraints and GAN\",\"authors\":\"Hui Wang , Haiyang Li , Zihao Shen , Peiqian Liu\",\"doi\":\"10.1016/j.future.2024.107589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The popularity of location-based services facilitates people’s lives to a certain extent and generates a large amount of trajectory data. Analyzing these data can contribute to society’s development and provide better location services for users, but it also faces the security problem of personal trajectory privacy leakage. However, existing methods often suffer from either excessive privacy protection or insufficient protection of individual privacy. Therefore, this paper proposes a personalized trajectory data publishing scheme combining road network constraints and GAN (RNC-DP). Firstly, after grid-representing the trajectory data, we remove the unreachable grids and define a trajectory generation constraint. Second, the proposed TraGM model synthesizes the trajectory data to meet the constraints. Again, during the trajectory data publishing process, the proposed TraDP mechanism performs k-means clustering on the synthesized trajectories and assigns appropriate privacy budgets to the clustered generalized trajectory location points. Finally, the protected trajectory data is published. Compared with the existing schemes, the proposed scheme improves privacy protection strength by 10.2%–41.2% while balancing data availability and has low time complexity.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"164 \",\"pages\":\"Article 107589\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24005533\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005533","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
基于位置的服务的普及在一定程度上方便了人们的生活,同时也产生了大量的轨迹数据。分析这些数据可以促进社会发展,为用户提供更好的位置服务,但同时也面临着个人轨迹隐私泄露的安全问题。然而,现有的方法往往存在隐私保护过度或个人隐私保护不足的问题。因此,本文提出了一种结合路网约束和 GAN 的个性化轨迹数据发布方案(RNC-DP)。首先,在对轨迹数据进行网格化表示后,我们删除了无法到达的网格,并定义了轨迹生成约束。其次,建议的 TraGM 模型合成轨迹数据以满足约束条件。再次,在轨迹数据发布过程中,建议的 TraDP 机制会对合成轨迹进行 k-means 聚类,并为聚类后的广义轨迹位置点分配适当的隐私预算。最后,发布受保护的轨迹数据。与现有方案相比,拟议方案在平衡数据可用性的同时,将隐私保护强度提高了 10.2%-41.2%,而且时间复杂度较低。
RNC-DP: A personalized trajectory data publishing scheme combining road network constraints and GAN
The popularity of location-based services facilitates people’s lives to a certain extent and generates a large amount of trajectory data. Analyzing these data can contribute to society’s development and provide better location services for users, but it also faces the security problem of personal trajectory privacy leakage. However, existing methods often suffer from either excessive privacy protection or insufficient protection of individual privacy. Therefore, this paper proposes a personalized trajectory data publishing scheme combining road network constraints and GAN (RNC-DP). Firstly, after grid-representing the trajectory data, we remove the unreachable grids and define a trajectory generation constraint. Second, the proposed TraGM model synthesizes the trajectory data to meet the constraints. Again, during the trajectory data publishing process, the proposed TraDP mechanism performs k-means clustering on the synthesized trajectories and assigns appropriate privacy budgets to the clustered generalized trajectory location points. Finally, the protected trajectory data is published. Compared with the existing schemes, the proposed scheme improves privacy protection strength by 10.2%–41.2% while balancing data availability and has low time complexity.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.