以 Black-Karasinski 过程为动机的 SEIS 随机流行病模型分析:概率密度函数

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Baoquan Zhou, Ningzhong Shi
{"title":"以 Black-Karasinski 过程为动机的 SEIS 随机流行病模型分析:概率密度函数","authors":"Baoquan Zhou,&nbsp;Ningzhong Shi","doi":"10.1016/j.chaos.2024.115713","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines a stochastic SEIS epidemic model motivated by Black–Karasinski process. First, it is shown that Black–Karasinski process is a both biologically and mathematically reasonable assumption compared with existing stochastic modeling methods. By analyzing the diffusion structure of the model and solving the relevant Kolmogorov–Fokker–Planck equation, a complete characterization for explicitly approximating the stationary density function near some quasi-positive equilibria is provided. Then for the deterministic model, the basic reproduction number and related asymptotic stability are studied. Finally, several numerical examples are given to substantiate our theoretical findings.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115713"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a stochastic SEIS epidemic model motivated by Black–Karasinski process: Probability density function\",\"authors\":\"Baoquan Zhou,&nbsp;Ningzhong Shi\",\"doi\":\"10.1016/j.chaos.2024.115713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines a stochastic SEIS epidemic model motivated by Black–Karasinski process. First, it is shown that Black–Karasinski process is a both biologically and mathematically reasonable assumption compared with existing stochastic modeling methods. By analyzing the diffusion structure of the model and solving the relevant Kolmogorov–Fokker–Planck equation, a complete characterization for explicitly approximating the stationary density function near some quasi-positive equilibria is provided. Then for the deterministic model, the basic reproduction number and related asymptotic stability are studied. Finally, several numerical examples are given to substantiate our theoretical findings.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115713\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012657\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012657","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以 Black-Karasinski 过程为动机的 SEIS 流行病随机模型。首先,与现有的随机建模方法相比,Black-Karasinski 过程在生物学和数学上都是一个合理的假设。通过分析模型的扩散结构和求解相关的 Kolmogorov-Fokker-Planck 方程,为显式逼近某些准正平衡点附近的静态密度函数提供了完整的描述。然后研究了确定性模型的基本繁殖数和相关渐近稳定性。最后,给出了几个数值例子来证实我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a stochastic SEIS epidemic model motivated by Black–Karasinski process: Probability density function
This paper examines a stochastic SEIS epidemic model motivated by Black–Karasinski process. First, it is shown that Black–Karasinski process is a both biologically and mathematically reasonable assumption compared with existing stochastic modeling methods. By analyzing the diffusion structure of the model and solving the relevant Kolmogorov–Fokker–Planck equation, a complete characterization for explicitly approximating the stationary density function near some quasi-positive equilibria is provided. Then for the deterministic model, the basic reproduction number and related asymptotic stability are studied. Finally, several numerical examples are given to substantiate our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信