Md. Ferdous Rahman , Md. Hafizur Rahman , Tanvir Al Galib , Ahsan Habib , Ahmad Irfan
{"title":"基于 DFT 的新型无机氟包晶 Mg3PF3 计算研究","authors":"Md. Ferdous Rahman , Md. Hafizur Rahman , Tanvir Al Galib , Ahsan Habib , Ahmad Irfan","doi":"10.1016/j.physleta.2024.130027","DOIUrl":null,"url":null,"abstract":"<div><div>Inorganic fluoroperovskite materials are increasingly important in solar technology due to their exceptional structural, optical, electronic, and mechanical properties. This study uses DFT calculations to investigate the properties of Mg<sub>3</sub>PF<sub>3</sub> fluoroperovskite. Our results show a crystal structure and lattice parameter of (<em>a</em> = 4.64 Å) which align with previous theoretical and experimental findings, confirming the accuracy of our calculations. Mechanical analysis reveals that Mg<sub>3</sub>PF<sub>3</sub> is naturally ductile, elastically anisotropic, and stable according to established criteria. The band structure and PDOS indicate that it is a semiconductor with direct bandgap of 3.88 eV at the Γ point, making it suitable for electronic applications. Electron charge density mapping suggests a predominantly ionic bonding nature. Optical property analysis shows significant dielectric constant peaks in the photon energy range favorable for solar cells. Overall, these findings position Mg<sub>3</sub>PF<sub>3</sub> as a promising candidate for solar cell technology, highlighting its potential for enhancing renewable energy solutions.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130027"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT-based computational study on a highly and lead-free inorganic new fluoroperovskite of Mg3PF3\",\"authors\":\"Md. Ferdous Rahman , Md. Hafizur Rahman , Tanvir Al Galib , Ahsan Habib , Ahmad Irfan\",\"doi\":\"10.1016/j.physleta.2024.130027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inorganic fluoroperovskite materials are increasingly important in solar technology due to their exceptional structural, optical, electronic, and mechanical properties. This study uses DFT calculations to investigate the properties of Mg<sub>3</sub>PF<sub>3</sub> fluoroperovskite. Our results show a crystal structure and lattice parameter of (<em>a</em> = 4.64 Å) which align with previous theoretical and experimental findings, confirming the accuracy of our calculations. Mechanical analysis reveals that Mg<sub>3</sub>PF<sub>3</sub> is naturally ductile, elastically anisotropic, and stable according to established criteria. The band structure and PDOS indicate that it is a semiconductor with direct bandgap of 3.88 eV at the Γ point, making it suitable for electronic applications. Electron charge density mapping suggests a predominantly ionic bonding nature. Optical property analysis shows significant dielectric constant peaks in the photon energy range favorable for solar cells. Overall, these findings position Mg<sub>3</sub>PF<sub>3</sub> as a promising candidate for solar cell technology, highlighting its potential for enhancing renewable energy solutions.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"528 \",\"pages\":\"Article 130027\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124007217\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007217","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A DFT-based computational study on a highly and lead-free inorganic new fluoroperovskite of Mg3PF3
Inorganic fluoroperovskite materials are increasingly important in solar technology due to their exceptional structural, optical, electronic, and mechanical properties. This study uses DFT calculations to investigate the properties of Mg3PF3 fluoroperovskite. Our results show a crystal structure and lattice parameter of (a = 4.64 Å) which align with previous theoretical and experimental findings, confirming the accuracy of our calculations. Mechanical analysis reveals that Mg3PF3 is naturally ductile, elastically anisotropic, and stable according to established criteria. The band structure and PDOS indicate that it is a semiconductor with direct bandgap of 3.88 eV at the Γ point, making it suitable for electronic applications. Electron charge density mapping suggests a predominantly ionic bonding nature. Optical property analysis shows significant dielectric constant peaks in the photon energy range favorable for solar cells. Overall, these findings position Mg3PF3 as a promising candidate for solar cell technology, highlighting its potential for enhancing renewable energy solutions.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.