基于聚类的迁移学习在图像和定位任务中的应用

Liuyi Yang, Patrick Finnerty, Chikara Ohta
{"title":"基于聚类的迁移学习在图像和定位任务中的应用","authors":"Liuyi Yang,&nbsp;Patrick Finnerty,&nbsp;Chikara Ohta","doi":"10.1016/j.mlwa.2024.100601","DOIUrl":null,"url":null,"abstract":"<div><div>Transfer learning can address the issue of insufficient labels in machine learning. Using knowledge in a labeled domain (source domain) can assist in acquiring and learning knowledge in a domain (target domain) that lacks some or all labels. In this paper, we propose a new cluster-based semi-supervised transfer learning (CBSSTL) under a new assumption that samples in the target domain are unlabeled but contain cluster information. Furthermore, we propose a new transfer learning framework and a method for fine-tuning parameters. We tested and compared the proposed method with other unsupervised and semi-supervised transfer learning methods on well-known image datasets. The experimental results demonstrate the effectiveness of the proposed method. Additionally, we created a localization dataset for transfer learning. Finally, we tested and analyzed the proposed method on this dataset. Its particularly challenging nature makes it difficult for our method to work effectively.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"18 ","pages":"Article 100601"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of cluster-based transfer learning in image and localization tasks\",\"authors\":\"Liuyi Yang,&nbsp;Patrick Finnerty,&nbsp;Chikara Ohta\",\"doi\":\"10.1016/j.mlwa.2024.100601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transfer learning can address the issue of insufficient labels in machine learning. Using knowledge in a labeled domain (source domain) can assist in acquiring and learning knowledge in a domain (target domain) that lacks some or all labels. In this paper, we propose a new cluster-based semi-supervised transfer learning (CBSSTL) under a new assumption that samples in the target domain are unlabeled but contain cluster information. Furthermore, we propose a new transfer learning framework and a method for fine-tuning parameters. We tested and compared the proposed method with other unsupervised and semi-supervised transfer learning methods on well-known image datasets. The experimental results demonstrate the effectiveness of the proposed method. Additionally, we created a localization dataset for transfer learning. Finally, we tested and analyzed the proposed method on this dataset. Its particularly challenging nature makes it difficult for our method to work effectively.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"18 \",\"pages\":\"Article 100601\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266682702400077X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682702400077X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迁移学习可以解决机器学习中标签不足的问题。利用有标签领域(源领域)的知识可以帮助获取和学习缺乏部分或全部标签的领域(目标领域)的知识。在本文中,我们提出了一种新的基于聚类的半监督迁移学习(CBSSTL),其新假设是:目标域中的样本没有标签,但包含聚类信息。此外,我们还提出了一种新的迁移学习框架和参数微调方法。我们在著名的图像数据集上对所提出的方法与其他无监督和半监督迁移学习方法进行了测试和比较。实验结果证明了所提方法的有效性。此外,我们还创建了一个用于迁移学习的定位数据集。最后,我们在该数据集上测试并分析了所提出的方法。该数据集特别具有挑战性,这使得我们的方法难以有效发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of cluster-based transfer learning in image and localization tasks
Transfer learning can address the issue of insufficient labels in machine learning. Using knowledge in a labeled domain (source domain) can assist in acquiring and learning knowledge in a domain (target domain) that lacks some or all labels. In this paper, we propose a new cluster-based semi-supervised transfer learning (CBSSTL) under a new assumption that samples in the target domain are unlabeled but contain cluster information. Furthermore, we propose a new transfer learning framework and a method for fine-tuning parameters. We tested and compared the proposed method with other unsupervised and semi-supervised transfer learning methods on well-known image datasets. The experimental results demonstrate the effectiveness of the proposed method. Additionally, we created a localization dataset for transfer learning. Finally, we tested and analyzed the proposed method on this dataset. Its particularly challenging nature makes it difficult for our method to work effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信