复合材料缺陷检测中的机器学习应用综述

Vahid Daghigh , Hamid Daghigh , Thomas E. Lacy Jr. , Mohammad Naraghi
{"title":"复合材料缺陷检测中的机器学习应用综述","authors":"Vahid Daghigh ,&nbsp;Hamid Daghigh ,&nbsp;Thomas E. Lacy Jr. ,&nbsp;Mohammad Naraghi","doi":"10.1016/j.mlwa.2024.100600","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML) techniques have shown promising applications in a broad range of topics in engineering, composite materials behavior analysis, and manufacturing. This paper reviews successful ML implementations for defect and damage identification and progression in composites. The focus is on predicting composites' responses under specific loads and environments and optimizing setting and imperfection sensitivity. Discussions and recommendations toward promising ML implementation practices for fruitful interpretable results in the composites’ analysis are provided.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"18 ","pages":"Article 100600"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of machine learning applications for defect detection in composite materials\",\"authors\":\"Vahid Daghigh ,&nbsp;Hamid Daghigh ,&nbsp;Thomas E. Lacy Jr. ,&nbsp;Mohammad Naraghi\",\"doi\":\"10.1016/j.mlwa.2024.100600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning (ML) techniques have shown promising applications in a broad range of topics in engineering, composite materials behavior analysis, and manufacturing. This paper reviews successful ML implementations for defect and damage identification and progression in composites. The focus is on predicting composites' responses under specific loads and environments and optimizing setting and imperfection sensitivity. Discussions and recommendations toward promising ML implementation practices for fruitful interpretable results in the composites’ analysis are provided.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"18 \",\"pages\":\"Article 100600\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)技术在工程、复合材料行为分析和制造等广泛领域的应用前景广阔。本文回顾了在复合材料缺陷和损伤识别与发展方面成功的 ML 实施。重点是预测复合材料在特定载荷和环境下的反应,以及优化设置和缺陷敏感性。本文就复合材料分析中有望获得可解释结果的 ML 实施实践进行了讨论并提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of machine learning applications for defect detection in composite materials
Machine learning (ML) techniques have shown promising applications in a broad range of topics in engineering, composite materials behavior analysis, and manufacturing. This paper reviews successful ML implementations for defect and damage identification and progression in composites. The focus is on predicting composites' responses under specific loads and environments and optimizing setting and imperfection sensitivity. Discussions and recommendations toward promising ML implementation practices for fruitful interpretable results in the composites’ analysis are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信