Tenglong Li , Dong Ngoduy , Seunghyeon Lee , Ziyuan Pu , Francesco Viti
{"title":"利用基于神经网络的符号回归发现汽车跟随行为的最佳关系假设","authors":"Tenglong Li , Dong Ngoduy , Seunghyeon Lee , Ziyuan Pu , Francesco Viti","doi":"10.1016/j.trc.2024.104920","DOIUrl":null,"url":null,"abstract":"<div><div>Mathematical models describing the dynamics of traffic flow have become increasingly popular as tools supporting the analysis and evaluation of traffic systems. This paper focuses on microscopic simulation tools, specifically those employing ordinary differential equations (ODEs). In general, most ODEs-based traffic models (i.e., car-following models or CFMs for short) require prior behavioral assumptions, that is, the optimal traffic state relationships. These assumptions vary widely across traffic scenarios, posing limitations. To overcome this hurdle and enhance CFMs’ practicability, this paper proposes a novel research paradigm—artificial intelligence (AI) for (traffic) physics or AI-driven traffic flow theory, to explore the mechanisms of car-following behaviors. The proposed neural network (SciNet)-based architecture for symbolic regression, called SciNet-CFM, can provide scientific hypotheses for the modeling of car-following behaviors from the AI perspective, thus relaxing the prior behavioral assumptions in current traffic theory. Specifically, symbolic regression is used to generate a tractable mathematical expression for CFM discovery, rather than the unexplained connection structure of traditional neural networks. The numerical and empirical experiments show that the SciNet-CFM has the potential to uncover the hidden properties of the observed microscopic traffic flow dynamics. The comparisons with classical and state-of-the-art models demonstrate a better performance of the proposed SciNet-CFM over traditional physics-based, data-driven, and hybrid models.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"170 ","pages":"Article 104920"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering the optimal relationship hypothesis of car-following behaviors with neural network-based symbolic regression\",\"authors\":\"Tenglong Li , Dong Ngoduy , Seunghyeon Lee , Ziyuan Pu , Francesco Viti\",\"doi\":\"10.1016/j.trc.2024.104920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mathematical models describing the dynamics of traffic flow have become increasingly popular as tools supporting the analysis and evaluation of traffic systems. This paper focuses on microscopic simulation tools, specifically those employing ordinary differential equations (ODEs). In general, most ODEs-based traffic models (i.e., car-following models or CFMs for short) require prior behavioral assumptions, that is, the optimal traffic state relationships. These assumptions vary widely across traffic scenarios, posing limitations. To overcome this hurdle and enhance CFMs’ practicability, this paper proposes a novel research paradigm—artificial intelligence (AI) for (traffic) physics or AI-driven traffic flow theory, to explore the mechanisms of car-following behaviors. The proposed neural network (SciNet)-based architecture for symbolic regression, called SciNet-CFM, can provide scientific hypotheses for the modeling of car-following behaviors from the AI perspective, thus relaxing the prior behavioral assumptions in current traffic theory. Specifically, symbolic regression is used to generate a tractable mathematical expression for CFM discovery, rather than the unexplained connection structure of traditional neural networks. The numerical and empirical experiments show that the SciNet-CFM has the potential to uncover the hidden properties of the observed microscopic traffic flow dynamics. The comparisons with classical and state-of-the-art models demonstrate a better performance of the proposed SciNet-CFM over traditional physics-based, data-driven, and hybrid models.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"170 \",\"pages\":\"Article 104920\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24004418\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24004418","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Discovering the optimal relationship hypothesis of car-following behaviors with neural network-based symbolic regression
Mathematical models describing the dynamics of traffic flow have become increasingly popular as tools supporting the analysis and evaluation of traffic systems. This paper focuses on microscopic simulation tools, specifically those employing ordinary differential equations (ODEs). In general, most ODEs-based traffic models (i.e., car-following models or CFMs for short) require prior behavioral assumptions, that is, the optimal traffic state relationships. These assumptions vary widely across traffic scenarios, posing limitations. To overcome this hurdle and enhance CFMs’ practicability, this paper proposes a novel research paradigm—artificial intelligence (AI) for (traffic) physics or AI-driven traffic flow theory, to explore the mechanisms of car-following behaviors. The proposed neural network (SciNet)-based architecture for symbolic regression, called SciNet-CFM, can provide scientific hypotheses for the modeling of car-following behaviors from the AI perspective, thus relaxing the prior behavioral assumptions in current traffic theory. Specifically, symbolic regression is used to generate a tractable mathematical expression for CFM discovery, rather than the unexplained connection structure of traditional neural networks. The numerical and empirical experiments show that the SciNet-CFM has the potential to uncover the hidden properties of the observed microscopic traffic flow dynamics. The comparisons with classical and state-of-the-art models demonstrate a better performance of the proposed SciNet-CFM over traditional physics-based, data-driven, and hybrid models.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.