基于符号回归的光滑几何形状一维声波晶体设计分析公式

IF 4.3 2区 工程技术 Q1 ACOUSTICS
Viktor Hruška, Aneta Furmanová, Michal Bednařík
{"title":"基于符号回归的光滑几何形状一维声波晶体设计分析公式","authors":"Viktor Hruška,&nbsp;Aneta Furmanová,&nbsp;Michal Bednařík","doi":"10.1016/j.jsv.2024.118821","DOIUrl":null,"url":null,"abstract":"<div><div>Even though locally periodic structures have been studied for more than three decades, the known analytical expressions relating the waveguide geometry and the acoustic transmission are limited to a few special cases. Having an access to numerical model is a great opportunity for data-driven discovery. Our choice of cubic splines to parametrize the waveguide unit cell geometry offers enough variability for waveguide design. Using Webster equation for unit cell and Floquet–Bloch theory for periodic structures, a dataset of numerical solutions was prepared. Employing the methods of physics-informed machine learning, we have extracted analytical formulae relating the waveguide geometry and the corresponding dispersion relation or directly the bandgap widths. The results contribute to the overall readability of the system and enable a deeper understanding of the underlying principles. Specifically, it allows for assessing the influence of the waveguide geometry, offering more efficient alternative to computationally demanding numerical optimization.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"597 ","pages":"Article 118821"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical formulae for design of one-dimensional sonic crystals with smooth geometry based on symbolic regression\",\"authors\":\"Viktor Hruška,&nbsp;Aneta Furmanová,&nbsp;Michal Bednařík\",\"doi\":\"10.1016/j.jsv.2024.118821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Even though locally periodic structures have been studied for more than three decades, the known analytical expressions relating the waveguide geometry and the acoustic transmission are limited to a few special cases. Having an access to numerical model is a great opportunity for data-driven discovery. Our choice of cubic splines to parametrize the waveguide unit cell geometry offers enough variability for waveguide design. Using Webster equation for unit cell and Floquet–Bloch theory for periodic structures, a dataset of numerical solutions was prepared. Employing the methods of physics-informed machine learning, we have extracted analytical formulae relating the waveguide geometry and the corresponding dispersion relation or directly the bandgap widths. The results contribute to the overall readability of the system and enable a deeper understanding of the underlying principles. Specifically, it allows for assessing the influence of the waveguide geometry, offering more efficient alternative to computationally demanding numerical optimization.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"597 \",\"pages\":\"Article 118821\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24005832\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005832","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

尽管对局部周期性结构的研究已有三十多年的历史,但已知的波导几何形状和声波传输的分析表达式仅限于少数特殊情况。获得数值模型是数据驱动发现的绝佳机会。我们选择三次样条来参数化波导单元格的几何形状,为波导设计提供了足够的可变性。利用韦伯斯特单元方程和周期性结构的 Floquet-Bloch 理论,我们编制了一个数值解数据集。利用物理信息机器学习方法,我们提取了波导几何形状与相应色散关系或直接与带隙宽度相关的解析公式。这些结果有助于提高系统的整体可读性,并加深对基本原理的理解。特别是,它允许评估波导几何形状的影响,为计算要求极高的数值优化提供了更有效的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical formulae for design of one-dimensional sonic crystals with smooth geometry based on symbolic regression
Even though locally periodic structures have been studied for more than three decades, the known analytical expressions relating the waveguide geometry and the acoustic transmission are limited to a few special cases. Having an access to numerical model is a great opportunity for data-driven discovery. Our choice of cubic splines to parametrize the waveguide unit cell geometry offers enough variability for waveguide design. Using Webster equation for unit cell and Floquet–Bloch theory for periodic structures, a dataset of numerical solutions was prepared. Employing the methods of physics-informed machine learning, we have extracted analytical formulae relating the waveguide geometry and the corresponding dispersion relation or directly the bandgap widths. The results contribute to the overall readability of the system and enable a deeper understanding of the underlying principles. Specifically, it allows for assessing the influence of the waveguide geometry, offering more efficient alternative to computationally demanding numerical optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信