{"title":"任意自旋 s 的 (s,1/2) 混合自旋伊辛模型的新无序相","authors":"Hasan Akın","doi":"10.1016/j.chaos.2024.115733","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce an Ising model with mixed spin <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span> (abbreviated as <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM) for any spin set <span><math><mrow><mrow><mo>[</mo><mo>−</mo><mi>s</mi><mo>,</mo><mi>s</mi><mo>]</mo></mrow><mo>∩</mo><mi>Z</mi></mrow></math></span> on a semi-infinite second-order Cayley tree and construct translation-invariant splitting Gibbs measures (TISGMs) associated with the model. We prove that as the weight of the <span><math><mi>s</mi></math></span>-spin value increases, the repelling region of the fixed point <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></msubsup></math></span>, corresponding to the TISGM, expands, leading to a broadening of the phase transition region. We also study tree-indexed Markov chains associated with the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM. Additionally, we clarify the extremality of the associated disordered phases by utilizing the method of Martinelli, Sinclair, and Weitz (Martinelli et al., 2007). By examining the non-extremality of the disordered phases related to the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM on the Cayley tree using the Kesten–Stigum condition, we extend previous research findings to encompass any set of spins in <span><math><mrow><mrow><mo>[</mo><mo>−</mo><mi>s</mi><mo>,</mo><mi>s</mi><mo>]</mo></mrow><mo>∩</mo><mi>Z</mi></mrow></math></span>. Furthermore, we prove that as the weight of the <span><math><mi>s</mi></math></span>-spin value increases, the region where the disordered phase corresponding to the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM is extreme narrows, while the region where it is non-extreme widens.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115733"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New disordered phases of the (s,1/2)-mixed spin Ising model for arbitrary spin s\",\"authors\":\"Hasan Akın\",\"doi\":\"10.1016/j.chaos.2024.115733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce an Ising model with mixed spin <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span> (abbreviated as <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM) for any spin set <span><math><mrow><mrow><mo>[</mo><mo>−</mo><mi>s</mi><mo>,</mo><mi>s</mi><mo>]</mo></mrow><mo>∩</mo><mi>Z</mi></mrow></math></span> on a semi-infinite second-order Cayley tree and construct translation-invariant splitting Gibbs measures (TISGMs) associated with the model. We prove that as the weight of the <span><math><mi>s</mi></math></span>-spin value increases, the repelling region of the fixed point <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></msubsup></math></span>, corresponding to the TISGM, expands, leading to a broadening of the phase transition region. We also study tree-indexed Markov chains associated with the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM. Additionally, we clarify the extremality of the associated disordered phases by utilizing the method of Martinelli, Sinclair, and Weitz (Martinelli et al., 2007). By examining the non-extremality of the disordered phases related to the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM on the Cayley tree using the Kesten–Stigum condition, we extend previous research findings to encompass any set of spins in <span><math><mrow><mrow><mo>[</mo><mo>−</mo><mi>s</mi><mo>,</mo><mi>s</mi><mo>]</mo></mrow><mo>∩</mo><mi>Z</mi></mrow></math></span>. Furthermore, we prove that as the weight of the <span><math><mi>s</mi></math></span>-spin value increases, the region where the disordered phase corresponding to the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM is extreme narrows, while the region where it is non-extreme widens.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115733\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012852\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012852","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
New disordered phases of the (s,1/2)-mixed spin Ising model for arbitrary spin s
In this paper, we introduce an Ising model with mixed spin (abbreviated as -MSIM) for any spin set on a semi-infinite second-order Cayley tree and construct translation-invariant splitting Gibbs measures (TISGMs) associated with the model. We prove that as the weight of the -spin value increases, the repelling region of the fixed point , corresponding to the TISGM, expands, leading to a broadening of the phase transition region. We also study tree-indexed Markov chains associated with the -MSIM. Additionally, we clarify the extremality of the associated disordered phases by utilizing the method of Martinelli, Sinclair, and Weitz (Martinelli et al., 2007). By examining the non-extremality of the disordered phases related to the -MSIM on the Cayley tree using the Kesten–Stigum condition, we extend previous research findings to encompass any set of spins in . Furthermore, we prove that as the weight of the -spin value increases, the region where the disordered phase corresponding to the -MSIM is extreme narrows, while the region where it is non-extreme widens.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.