通过 ADRC 方法实现卡普托-哈达玛德分数热方程的边界扰动抑制

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Rui-Yang Cai , Hua-Cheng Zhou
{"title":"通过 ADRC 方法实现卡普托-哈达玛德分数热方程的边界扰动抑制","authors":"Rui-Yang Cai ,&nbsp;Hua-Cheng Zhou","doi":"10.1016/j.chaos.2024.115741","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the boundary control matched disturbance rejection problem for Caputo-Hadamard fractional heat equations with time delay. By utilizing the novel idea of the active disturbance rejection control (ADRC) approach, two infinite-dimensional systems are constructed. One separates the disturbance from the control input, and the other estimates the unknown disturbance without high gain. By employing the backstepping method, together with the disturbance-compensator, a desired stabilizing controller is designed, and the asymptotical stability is achieved for the original system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115741"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary disturbance rejection for Caputo-Hadamard fractional heat equations via ADRC approach\",\"authors\":\"Rui-Yang Cai ,&nbsp;Hua-Cheng Zhou\",\"doi\":\"10.1016/j.chaos.2024.115741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the boundary control matched disturbance rejection problem for Caputo-Hadamard fractional heat equations with time delay. By utilizing the novel idea of the active disturbance rejection control (ADRC) approach, two infinite-dimensional systems are constructed. One separates the disturbance from the control input, and the other estimates the unknown disturbance without high gain. By employing the backstepping method, together with the disturbance-compensator, a desired stabilizing controller is designed, and the asymptotical stability is achieved for the original system.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115741\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012931\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012931","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究带时延的 Caputo-Hadamard 分式热方程的边界控制匹配干扰抑制问题。利用主动扰动抑制控制(ADRC)方法的新思想,构建了两个无穷维系统。其中一个系统将干扰从控制输入中分离出来,另一个系统在没有高增益的情况下估计未知干扰。通过采用反步进方法和干扰补偿器,设计出了理想的稳定控制器,并实现了原始系统的渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary disturbance rejection for Caputo-Hadamard fractional heat equations via ADRC approach
This paper focuses on the boundary control matched disturbance rejection problem for Caputo-Hadamard fractional heat equations with time delay. By utilizing the novel idea of the active disturbance rejection control (ADRC) approach, two infinite-dimensional systems are constructed. One separates the disturbance from the control input, and the other estimates the unknown disturbance without high gain. By employing the backstepping method, together with the disturbance-compensator, a desired stabilizing controller is designed, and the asymptotical stability is achieved for the original system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信