Subhan Ullah , Amir Ali , Ikram Ullah , Mohammad Mahtab Alam , Zareen A. Khan
{"title":"收敛/发散通道中磁化杰弗里-哈梅尔(JH)流的活化能和非达西效应","authors":"Subhan Ullah , Amir Ali , Ikram Ullah , Mohammad Mahtab Alam , Zareen A. Khan","doi":"10.1016/j.chaos.2024.115749","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluids have gained significant attention for enhancing heat and mass transfer, particularly in complex flow configurations like convergent and divergent channels. Key applications include improved solar collectors, cooling in heat exchangers, nuclear reactors, drug delivery, thermoelectric systems, reduced friction in lubrication and thermal therapies. In this context, the present research examines the impact of Darcy-Forchheimer aspect on Jeffery-Hamel nanofluids flow through non-parallel converging/diverging channels. The behavior of nanoparticles is exhibited and investigated through the Buongiorno model for nanomaterials. Enhancing thermal efficiency is crucial for many fluids, and this study aims to explore its significance. As the increment in thermal efficiency of many fluids can be more important. The influence of Soret Dufour aspects, heat source, and activation energy are also come upon in current study. Lorentz force, solar radiation and thermal radiations are further examine arises due to the magnetic field application. The current main system of differential equations is converted into ordinary differential equations by appropriate transformations. The obtained systems of are numerically simulated with the help of Mathematica-9 software utilizing the NDSolve technique. The consequences of various physical factors on subjective distributions and engineering quantities are examined. In addition, validation of numerical technique also provided.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115749"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation energy and non-Darcy effects on magnetized Jeffery-Hamel (JH) flow in convergent/divergent channels\",\"authors\":\"Subhan Ullah , Amir Ali , Ikram Ullah , Mohammad Mahtab Alam , Zareen A. Khan\",\"doi\":\"10.1016/j.chaos.2024.115749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanofluids have gained significant attention for enhancing heat and mass transfer, particularly in complex flow configurations like convergent and divergent channels. Key applications include improved solar collectors, cooling in heat exchangers, nuclear reactors, drug delivery, thermoelectric systems, reduced friction in lubrication and thermal therapies. In this context, the present research examines the impact of Darcy-Forchheimer aspect on Jeffery-Hamel nanofluids flow through non-parallel converging/diverging channels. The behavior of nanoparticles is exhibited and investigated through the Buongiorno model for nanomaterials. Enhancing thermal efficiency is crucial for many fluids, and this study aims to explore its significance. As the increment in thermal efficiency of many fluids can be more important. The influence of Soret Dufour aspects, heat source, and activation energy are also come upon in current study. Lorentz force, solar radiation and thermal radiations are further examine arises due to the magnetic field application. The current main system of differential equations is converted into ordinary differential equations by appropriate transformations. The obtained systems of are numerically simulated with the help of Mathematica-9 software utilizing the NDSolve technique. The consequences of various physical factors on subjective distributions and engineering quantities are examined. In addition, validation of numerical technique also provided.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115749\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924013018\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924013018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Activation energy and non-Darcy effects on magnetized Jeffery-Hamel (JH) flow in convergent/divergent channels
Nanofluids have gained significant attention for enhancing heat and mass transfer, particularly in complex flow configurations like convergent and divergent channels. Key applications include improved solar collectors, cooling in heat exchangers, nuclear reactors, drug delivery, thermoelectric systems, reduced friction in lubrication and thermal therapies. In this context, the present research examines the impact of Darcy-Forchheimer aspect on Jeffery-Hamel nanofluids flow through non-parallel converging/diverging channels. The behavior of nanoparticles is exhibited and investigated through the Buongiorno model for nanomaterials. Enhancing thermal efficiency is crucial for many fluids, and this study aims to explore its significance. As the increment in thermal efficiency of many fluids can be more important. The influence of Soret Dufour aspects, heat source, and activation energy are also come upon in current study. Lorentz force, solar radiation and thermal radiations are further examine arises due to the magnetic field application. The current main system of differential equations is converted into ordinary differential equations by appropriate transformations. The obtained systems of are numerically simulated with the help of Mathematica-9 software utilizing the NDSolve technique. The consequences of various physical factors on subjective distributions and engineering quantities are examined. In addition, validation of numerical technique also provided.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.