基于深度稀疏自动编码器的群落检测和相互依存基础设施网络的弹性分析

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Shuliang Wang, Jin Wang, Shengyang Luan, Bo Song
{"title":"基于深度稀疏自动编码器的群落检测和相互依存基础设施网络的弹性分析","authors":"Shuliang Wang,&nbsp;Jin Wang,&nbsp;Shengyang Luan,&nbsp;Bo Song","doi":"10.1016/j.chaos.2024.115720","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the global information of nodes and constructs a similarity matrix based on s-hop counts. It effectively extracts low-dimensional feature matrices from high-dimensional data to achieve community detection results by utilizing deep learning techniques and deep sparse autoencoders. We successfully detect communities and identify critical inter-community edges. Additionally, we delve into the influence of vulnerable inter-community edges on the resilience of interdependent networks. To illustrate this, a widely employed artificial interdependent power-communication network is adopted as a case study, examining various failure intensities and coupling modes. This approach allows visualization communities, and the impact of vulnerable edges on the interdependent network's resilience is investigated from both structural and functional perspectives. Results have shown that damage to edges bridging different communities can lead to severe network vulnerability. Accordingly, prioritizing the security of these edges will strengthen the network's resilience, which is crucial for preventing further network damage.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115720"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep sparse autoencoders-based community detection and resilience analysis of interdependent infrastructure networks\",\"authors\":\"Shuliang Wang,&nbsp;Jin Wang,&nbsp;Shengyang Luan,&nbsp;Bo Song\",\"doi\":\"10.1016/j.chaos.2024.115720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers the global information of nodes and constructs a similarity matrix based on s-hop counts. It effectively extracts low-dimensional feature matrices from high-dimensional data to achieve community detection results by utilizing deep learning techniques and deep sparse autoencoders. We successfully detect communities and identify critical inter-community edges. Additionally, we delve into the influence of vulnerable inter-community edges on the resilience of interdependent networks. To illustrate this, a widely employed artificial interdependent power-communication network is adopted as a case study, examining various failure intensities and coupling modes. This approach allows visualization communities, and the impact of vulnerable edges on the interdependent network's resilience is investigated from both structural and functional perspectives. Results have shown that damage to edges bridging different communities can lead to severe network vulnerability. Accordingly, prioritizing the security of these edges will strengthen the network's resilience, which is crucial for preventing further network damage.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115720\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012724\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012724","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了节点的全局信息,并基于 s-hop 计数构建了一个相似性矩阵。通过利用深度学习技术和深度稀疏自动编码器,它能有效地从高维数据中提取低维特征矩阵,从而实现社群检测结果。我们成功地检测到了社区,并识别出了社区间的关键边缘。此外,我们还深入研究了脆弱的社群间边缘对相互依存网络恢复能力的影响。为了说明这一点,我们采用了一个广泛使用的人工相互依赖电力通信网络作为案例,研究了各种故障强度和耦合模式。这种方法允许可视化社区,并从结构和功能两个角度研究了脆弱边缘对相互依存网络复原力的影响。结果表明,连接不同群落的边缘受损会导致严重的网络脆弱性。因此,优先保证这些边缘的安全将增强网络的复原力,这对防止网络进一步受损至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep sparse autoencoders-based community detection and resilience analysis of interdependent infrastructure networks
This paper considers the global information of nodes and constructs a similarity matrix based on s-hop counts. It effectively extracts low-dimensional feature matrices from high-dimensional data to achieve community detection results by utilizing deep learning techniques and deep sparse autoencoders. We successfully detect communities and identify critical inter-community edges. Additionally, we delve into the influence of vulnerable inter-community edges on the resilience of interdependent networks. To illustrate this, a widely employed artificial interdependent power-communication network is adopted as a case study, examining various failure intensities and coupling modes. This approach allows visualization communities, and the impact of vulnerable edges on the interdependent network's resilience is investigated from both structural and functional perspectives. Results have shown that damage to edges bridging different communities can lead to severe network vulnerability. Accordingly, prioritizing the security of these edges will strengthen the network's resilience, which is crucial for preventing further network damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信