Sarah I Hernandez, Samuel J Peccoud, Casey-Tyler Berezin, Jean Peccoud
{"title":"自我记录质粒","authors":"Sarah I Hernandez, Samuel J Peccoud, Casey-Tyler Berezin, Jean Peccoud","doi":"10.1101/2024.10.29.620927","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmids are the workhorse of biotechnology. These small DNA molecules are used to produce recombinant proteins and to engineer living organisms. They can be regarded as the blueprints of many biotechnology products. It is, therefore, critical to ensure that the sequences of these DNA molecules match their intended designs. Yet, plasmid verification remains challenging. To secure the exchange of plasmids in research and development workflows, we have developed self-documenting plasmids that encode information about themselves in their own DNA molecules. Users of self-documenting plasmids can retrieve critical information about the plasmid without prior knowledge of the plasmid identity. The insertion of documentation in the plasmid sequence does not adversely affect their propagation in bacteria and does not compromise protein expression in mammalian cells. This technology simplifies plasmid verification, hardens supply chains, and has the potential to transform the protection of intellectual property in the life sciences.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-Documenting Plasmids.\",\"authors\":\"Sarah I Hernandez, Samuel J Peccoud, Casey-Tyler Berezin, Jean Peccoud\",\"doi\":\"10.1101/2024.10.29.620927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmids are the workhorse of biotechnology. These small DNA molecules are used to produce recombinant proteins and to engineer living organisms. They can be regarded as the blueprints of many biotechnology products. It is, therefore, critical to ensure that the sequences of these DNA molecules match their intended designs. Yet, plasmid verification remains challenging. To secure the exchange of plasmids in research and development workflows, we have developed self-documenting plasmids that encode information about themselves in their own DNA molecules. Users of self-documenting plasmids can retrieve critical information about the plasmid without prior knowledge of the plasmid identity. The insertion of documentation in the plasmid sequence does not adversely affect their propagation in bacteria and does not compromise protein expression in mammalian cells. This technology simplifies plasmid verification, hardens supply chains, and has the potential to transform the protection of intellectual property in the life sciences.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.10.29.620927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.29.620927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
质粒生产的生物产品是生物经济的重要组成部分,因此确保物理 DNA 构建物的序列符合预期设计至关重要。然而,质粒的验证仍然是生产过程中一个困难和被忽视的步骤。我们开发了一种网络应用程序,用于生成证书,将质粒及其设计者的信息嵌入序列本身。质粒可以从头开始测序,在测序和组装上传后,质粒序列可以得到验证,并纠正大量错误。用户还可以在 CertiWicate 序列中编码 GenBank 或纯文本 Wiles,以便在序列中存储与质粒相关的附加数据或文档。CertiWicate 插入不会对细菌 DNA 产量或哺乳动物细胞中的功能蛋白表达产生不利影响。这项技术加快并简化了质粒验证,有可能改变生命科学领域的生物生产、生物监测和知识产权保护。
Plasmids are the workhorse of biotechnology. These small DNA molecules are used to produce recombinant proteins and to engineer living organisms. They can be regarded as the blueprints of many biotechnology products. It is, therefore, critical to ensure that the sequences of these DNA molecules match their intended designs. Yet, plasmid verification remains challenging. To secure the exchange of plasmids in research and development workflows, we have developed self-documenting plasmids that encode information about themselves in their own DNA molecules. Users of self-documenting plasmids can retrieve critical information about the plasmid without prior knowledge of the plasmid identity. The insertion of documentation in the plasmid sequence does not adversely affect their propagation in bacteria and does not compromise protein expression in mammalian cells. This technology simplifies plasmid verification, hardens supply chains, and has the potential to transform the protection of intellectual property in the life sciences.