利用无标记数据进行肿瘤预测的不确定性估计

Juyoung Yun, Shahira Abousamra, Chen Li, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Alison Van Dyke, Joel Saltz, Chao Chen
{"title":"利用无标记数据进行肿瘤预测的不确定性估计","authors":"Juyoung Yun, Shahira Abousamra, Chen Li, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Alison Van Dyke, Joel Saltz, Chao Chen","doi":"10.1109/cvprw63382.2024.00688","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating uncertainty of a neural network is crucial in providing transparency and trustworthiness. In this paper, we focus on uncertainty estimation for digital pathology prediction models. To explore the large amount of unlabeled data in digital pathology, we propose to adopt novel learning method that can fully exploit unlabeled data. The proposed method achieves superior performance compared with different baselines including the celebrated Monte-Carlo Dropout. Closeup inspection of uncertain regions reveal insight into the model and improves the trustworthiness of the models.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"2024 ","pages":"6946-6954"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567674/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Estimation for Tumor Prediction with Unlabeled Data.\",\"authors\":\"Juyoung Yun, Shahira Abousamra, Chen Li, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Alison Van Dyke, Joel Saltz, Chao Chen\",\"doi\":\"10.1109/cvprw63382.2024.00688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimating uncertainty of a neural network is crucial in providing transparency and trustworthiness. In this paper, we focus on uncertainty estimation for digital pathology prediction models. To explore the large amount of unlabeled data in digital pathology, we propose to adopt novel learning method that can fully exploit unlabeled data. The proposed method achieves superior performance compared with different baselines including the celebrated Monte-Carlo Dropout. Closeup inspection of uncertain regions reveal insight into the model and improves the trustworthiness of the models.</p>\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"2024 \",\"pages\":\"6946-6954\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvprw63382.2024.00688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvprw63382.2024.00688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

估计神经网络的不确定性对于提供透明度和可信度至关重要。本文的重点是数字病理预测模型的不确定性估计。为了探索数字病理学中的大量无标记数据,我们建议采用能充分利用无标记数据的新型学习方法。与不同的基线方法(包括著名的 Monte-Carlo Dropout)相比,所提出的方法性能更优。对不确定区域的特写检查揭示了对模型的洞察力,提高了模型的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Estimation for Tumor Prediction with Unlabeled Data.

Estimating uncertainty of a neural network is crucial in providing transparency and trustworthiness. In this paper, we focus on uncertainty estimation for digital pathology prediction models. To explore the large amount of unlabeled data in digital pathology, we propose to adopt novel learning method that can fully exploit unlabeled data. The proposed method achieves superior performance compared with different baselines including the celebrated Monte-Carlo Dropout. Closeup inspection of uncertain regions reveal insight into the model and improves the trustworthiness of the models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信