人工智能:未来 10 年,人工智能将在哪些方面改变心脏病学。

The British journal of cardiology Pub Date : 2024-04-16 eCollection Date: 2024-01-01 DOI:10.5837/bjc.2024.015
Sam Brown
{"title":"人工智能:未来 10 年,人工智能将在哪些方面改变心脏病学。","authors":"Sam Brown","doi":"10.5837/bjc.2024.015","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) will revolutionise cardiology practices over the next decade, from optimising diagnostics to individualising treatment strategies. Moreover, it can play an important role in combating gender inequalities in cardiovascular disease outcomes. There is growing evidence that AI algorithms can match humans at echocardiography analysis, while also being able to extract subtle differences that the human eye cannot detect. Similar promise is evident in the analysis of electrocardiograms, creating a new layer of interpretation. From big data, AI can produce algorithms that individualise cardiac risk factors and prevent perpetuating gender biases in diagnosis. Nonetheless, AI implementation requires caution. To avoid worsening health inequalities, it must be trained across diverse populations, and when errors arise, a robust regulatory framework must be in place to ensure safety and accountability. AI is perfectly positioned to capitalise on the growth of big data, but to proceed we require a generation of physicians who understand its fundamentals.</p>","PeriodicalId":74959,"journal":{"name":"The British journal of cardiology","volume":"31 2","pages":"015"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heartificial intelligence: in what ways will artificial intelligence lead to changes in cardiology over the next 10 years.\",\"authors\":\"Sam Brown\",\"doi\":\"10.5837/bjc.2024.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) will revolutionise cardiology practices over the next decade, from optimising diagnostics to individualising treatment strategies. Moreover, it can play an important role in combating gender inequalities in cardiovascular disease outcomes. There is growing evidence that AI algorithms can match humans at echocardiography analysis, while also being able to extract subtle differences that the human eye cannot detect. Similar promise is evident in the analysis of electrocardiograms, creating a new layer of interpretation. From big data, AI can produce algorithms that individualise cardiac risk factors and prevent perpetuating gender biases in diagnosis. Nonetheless, AI implementation requires caution. To avoid worsening health inequalities, it must be trained across diverse populations, and when errors arise, a robust regulatory framework must be in place to ensure safety and accountability. AI is perfectly positioned to capitalise on the growth of big data, but to proceed we require a generation of physicians who understand its fundamentals.</p>\",\"PeriodicalId\":74959,\"journal\":{\"name\":\"The British journal of cardiology\",\"volume\":\"31 2\",\"pages\":\"015\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The British journal of cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5837/bjc.2024.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British journal of cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5837/bjc.2024.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)将在未来十年彻底改变心脏病学实践,从优化诊断到个体化治疗策略。此外,它还能在消除心血管疾病结果的性别不平等方面发挥重要作用。越来越多的证据表明,人工智能算法在超声心动图分析方面可以与人类相媲美,同时还能提取人眼无法发现的细微差别。在心电图分析方面,类似的前景也很明显,这将创造一个新的解释层。从大数据中,人工智能可以产生个性化心脏风险因素的算法,防止诊断中的性别偏见长期存在。尽管如此,人工智能的应用仍需谨慎。为避免加剧健康不平等,必须在不同人群中进行培训,一旦出现错误,必须制定强有力的监管框架,以确保安全和问责。人工智能完全有能力利用大数据的增长,但要继续发展,我们需要一代了解其基本原理的医生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heartificial intelligence: in what ways will artificial intelligence lead to changes in cardiology over the next 10 years.

Artificial intelligence (AI) will revolutionise cardiology practices over the next decade, from optimising diagnostics to individualising treatment strategies. Moreover, it can play an important role in combating gender inequalities in cardiovascular disease outcomes. There is growing evidence that AI algorithms can match humans at echocardiography analysis, while also being able to extract subtle differences that the human eye cannot detect. Similar promise is evident in the analysis of electrocardiograms, creating a new layer of interpretation. From big data, AI can produce algorithms that individualise cardiac risk factors and prevent perpetuating gender biases in diagnosis. Nonetheless, AI implementation requires caution. To avoid worsening health inequalities, it must be trained across diverse populations, and when errors arise, a robust regulatory framework must be in place to ensure safety and accountability. AI is perfectly positioned to capitalise on the growth of big data, but to proceed we require a generation of physicians who understand its fundamentals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信