Julia Wrobel, Alex C Soupir, Mitchell T Hayes, Lauren C Peres, Thao Vu, Andrew Leroux, Brooke L Fridley
{"title":"mxfda:用于单细胞空间数据功能数据分析的综合工具包。","authors":"Julia Wrobel, Alex C Soupir, Mitchell T Hayes, Lauren C Peres, Thao Vu, Andrew Leroux, Brooke L Fridley","doi":"10.1093/bioadv/vbae155","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Technologies that produce spatial single-cell (SC) data have revolutionized the study of tissue microstructures and promise to advance personalized treatment of cancer by revealing new insights about the tumor microenvironment. Functional data analysis (FDA) is an ideal analytic framework for connecting cell spatial relationships to patient outcomes, but can be challenging to implement. To address this need, we present mxfda, an R package for end-to-end analysis of SC spatial data using FDA. mxfda implements a suite of methods to facilitate spatial analysis of SC imaging data using FDA techniques.</p><p><strong>Availability and implementation: </strong>The mxfda R package is freely available at https://cran.r-project.org/package=mxfda and has detailed documentation, including four vignettes, available at http://juliawrobel.com/mxfda/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae155"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568348/pdf/","citationCount":"0","resultStr":"{\"title\":\"mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data.\",\"authors\":\"Julia Wrobel, Alex C Soupir, Mitchell T Hayes, Lauren C Peres, Thao Vu, Andrew Leroux, Brooke L Fridley\",\"doi\":\"10.1093/bioadv/vbae155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Technologies that produce spatial single-cell (SC) data have revolutionized the study of tissue microstructures and promise to advance personalized treatment of cancer by revealing new insights about the tumor microenvironment. Functional data analysis (FDA) is an ideal analytic framework for connecting cell spatial relationships to patient outcomes, but can be challenging to implement. To address this need, we present mxfda, an R package for end-to-end analysis of SC spatial data using FDA. mxfda implements a suite of methods to facilitate spatial analysis of SC imaging data using FDA techniques.</p><p><strong>Availability and implementation: </strong>The mxfda R package is freely available at https://cran.r-project.org/package=mxfda and has detailed documentation, including four vignettes, available at http://juliawrobel.com/mxfda/.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae155\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568348/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要:产生空间单细胞(SC)数据的技术彻底改变了对组织微结构的研究,并有望通过揭示肿瘤微环境的新见解推进癌症的个性化治疗。功能数据分析(FDA)是将细胞空间关系与患者预后联系起来的理想分析框架,但实施起来却很困难。为了满足这一需求,我们推出了 mxfda,这是一个使用 FDA 对 SC 空间数据进行端到端分析的 R 软件包。mxfda 实现了一套方法,便于使用 FDA 技术对 SC 成像数据进行空间分析:mxfda R 软件包可从 https://cran.r-project.org/package=mxfda 免费获取,其详细文档(包括四个小节)可从 http://juliawrobel.com/mxfda/ 获取。
mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data.
Summary: Technologies that produce spatial single-cell (SC) data have revolutionized the study of tissue microstructures and promise to advance personalized treatment of cancer by revealing new insights about the tumor microenvironment. Functional data analysis (FDA) is an ideal analytic framework for connecting cell spatial relationships to patient outcomes, but can be challenging to implement. To address this need, we present mxfda, an R package for end-to-end analysis of SC spatial data using FDA. mxfda implements a suite of methods to facilitate spatial analysis of SC imaging data using FDA techniques.
Availability and implementation: The mxfda R package is freely available at https://cran.r-project.org/package=mxfda and has detailed documentation, including four vignettes, available at http://juliawrobel.com/mxfda/.