不变集的莫尔斯预分解。

IF 1.9 3区 数学 Q1 MATHEMATICS
Qualitative Theory of Dynamical Systems Pub Date : 2025-01-01 Epub Date: 2024-11-15 DOI:10.1007/s12346-024-01144-3
Michał Lipiński, Konstantin Mischaikow, Marian Mrozek
{"title":"不变集的莫尔斯预分解。","authors":"Michał Lipiński, Konstantin Mischaikow, Marian Mrozek","doi":"10.1007/s12346-024-01144-3","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the study of recurrent orbits and dynamics within a Morse set of a Morse decomposition we introduce the concept of Morse predecomposition of an isolated invariant set within the setting of both combinatorial and classical dynamical systems. While Morse decomposition summarizes solely the gradient part of a dynamical system, the developed generalization extends to the recurrent component as well. In particular, a chain recurrent set, which is indecomposable in terms of Morse decomposition, can be represented more finely in the Morse predecomposition framework. This generalization is achieved by forgoing the poset structure inherent to Morse decomposition and relaxing the notion of connection between Morse sets (elements of Morse decomposition) in favor of what we term 'links'. We prove that a Morse decomposition is a special case of Morse predecomposition indexed by a poset. Additionally, we show how a Morse predecomposition may be condensed back to retrieve a Morse decomposition.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"24 1","pages":"5"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568017/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morse Predecomposition of an Invariant Set.\",\"authors\":\"Michał Lipiński, Konstantin Mischaikow, Marian Mrozek\",\"doi\":\"10.1007/s12346-024-01144-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by the study of recurrent orbits and dynamics within a Morse set of a Morse decomposition we introduce the concept of Morse predecomposition of an isolated invariant set within the setting of both combinatorial and classical dynamical systems. While Morse decomposition summarizes solely the gradient part of a dynamical system, the developed generalization extends to the recurrent component as well. In particular, a chain recurrent set, which is indecomposable in terms of Morse decomposition, can be represented more finely in the Morse predecomposition framework. This generalization is achieved by forgoing the poset structure inherent to Morse decomposition and relaxing the notion of connection between Morse sets (elements of Morse decomposition) in favor of what we term 'links'. We prove that a Morse decomposition is a special case of Morse predecomposition indexed by a poset. Additionally, we show how a Morse predecomposition may be condensed back to retrieve a Morse decomposition.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"24 1\",\"pages\":\"5\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568017/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01144-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01144-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受摩尔斯分解的摩尔斯集合内的循环轨道和动力学研究的启发,我们在组合和经典动力学系统中引入了孤立不变集的摩尔斯预分解概念。虽然莫尔斯分解只概括了动态系统的梯度部分,但所发展的概括也扩展到了递归部分。特别是,在莫尔斯分解中不可分解的链式循环集,可以在莫尔斯预分解框架中得到更精细的表示。我们放弃了莫尔斯分解所固有的正集结构,放宽了莫尔斯集合(莫尔斯分解的元素)之间的连接概念,转而使用我们称之为 "链接 "的概念,从而实现了这种概括。我们证明了莫尔斯分解是莫尔斯谓分解的一个特例,它以一个正集为索引。此外,我们还展示了如何通过压缩莫尔斯预分解来检索莫尔斯分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morse Predecomposition of an Invariant Set.

Motivated by the study of recurrent orbits and dynamics within a Morse set of a Morse decomposition we introduce the concept of Morse predecomposition of an isolated invariant set within the setting of both combinatorial and classical dynamical systems. While Morse decomposition summarizes solely the gradient part of a dynamical system, the developed generalization extends to the recurrent component as well. In particular, a chain recurrent set, which is indecomposable in terms of Morse decomposition, can be represented more finely in the Morse predecomposition framework. This generalization is achieved by forgoing the poset structure inherent to Morse decomposition and relaxing the notion of connection between Morse sets (elements of Morse decomposition) in favor of what we term 'links'. We prove that a Morse decomposition is a special case of Morse predecomposition indexed by a poset. Additionally, we show how a Morse predecomposition may be condensed back to retrieve a Morse decomposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信