Antonio Matt Reck , David P. Siderovski , Steven G. Kinsey
{"title":"合成大麻素激动剂 WIN 55,212-2 可通过激活 CB2 受体减轻实验性瘙痒。","authors":"Antonio Matt Reck , David P. Siderovski , Steven G. Kinsey","doi":"10.1016/j.neuropharm.2024.110216","DOIUrl":null,"url":null,"abstract":"<div><div>Pruritus (<em>i.e.</em>, the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor <em>Cannabis</em> phytoconstituents, Δ<sup>8</sup>-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB<sub>2</sub> cannabinoid receptor. The CB<sub>2</sub> receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB<sub>1</sub> positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ<sup>8</sup>-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene <em>cannabis</em> constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"264 ","pages":"Article 110216"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The synthetic cannabinoid agonist WIN 55,212-2 reduces experimental pruritus via CB2 receptor activation\",\"authors\":\"Antonio Matt Reck , David P. Siderovski , Steven G. Kinsey\",\"doi\":\"10.1016/j.neuropharm.2024.110216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pruritus (<em>i.e.</em>, the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor <em>Cannabis</em> phytoconstituents, Δ<sup>8</sup>-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB<sub>2</sub> cannabinoid receptor. The CB<sub>2</sub> receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB<sub>1</sub> positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ<sup>8</sup>-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene <em>cannabis</em> constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"264 \",\"pages\":\"Article 110216\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002839082400385X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002839082400385X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The synthetic cannabinoid agonist WIN 55,212-2 reduces experimental pruritus via CB2 receptor activation
Pruritus (i.e., the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor Cannabis phytoconstituents, Δ8-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB2 cannabinoid receptor. The CB2 receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB1 positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ8-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene cannabis constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).