Safia Mahabub Sauty, Ashley Fisher, Andrew Dolson, Krassimir Yankulov
{"title":"DNA 过程因子 PCNA(POL30)的突变易导致 FLO11 基因座的表观遗传不稳定。","authors":"Safia Mahabub Sauty, Ashley Fisher, Andrew Dolson, Krassimir Yankulov","doi":"10.1242/jcs.262006","DOIUrl":null,"url":null,"abstract":"<p><p>The FLO genes in Saccharomyces cerevisiae are repressed by heterochromatin formation, involving histone deacetylases, transcription factors and non-coding RNAs. Here, we report that mutations in the processivity factor POL30 (PCNA) that show transient derepression at the subtelomeres and the mating-type loci do not derepress FLO loci. However, deletions of the replisome stability factors RRM3 and TOF1 along with pol30 mutations induced flocculation phenotypes. The phenotypes correlated with increased expression of reporter proteins driven by the FLO11 promoter, the frequency of silent to active conversions of FLO11, and reduced expression of the regulatory long non-coding RNAs ICR1 and PWR1. Alterations in the local replication landscape of FLO11 indicate a link between defects in the fork protection complex and the stability of gene silencing. Analyses of these mutants at the subtelomeres and the HMLα locus showed a similar derepression phenotype and suggest transient instability of both active and silent states of FLO11. We conclude that RRM3 and TOF1 interact differentially with the pol30 mutations to promote transient derepression or complete epigenetic conversions of FLO11. We suggest that the interaction between POL30, RRM3 and TOF1 is essential to maintain epigenetic stability at the studied loci.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutations in the DNA processivity factor POL30 predisposes the FLO11 locus to epigenetic instability in S. cerevisiae.\",\"authors\":\"Safia Mahabub Sauty, Ashley Fisher, Andrew Dolson, Krassimir Yankulov\",\"doi\":\"10.1242/jcs.262006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The FLO genes in Saccharomyces cerevisiae are repressed by heterochromatin formation, involving histone deacetylases, transcription factors and non-coding RNAs. Here, we report that mutations in the processivity factor POL30 (PCNA) that show transient derepression at the subtelomeres and the mating-type loci do not derepress FLO loci. However, deletions of the replisome stability factors RRM3 and TOF1 along with pol30 mutations induced flocculation phenotypes. The phenotypes correlated with increased expression of reporter proteins driven by the FLO11 promoter, the frequency of silent to active conversions of FLO11, and reduced expression of the regulatory long non-coding RNAs ICR1 and PWR1. Alterations in the local replication landscape of FLO11 indicate a link between defects in the fork protection complex and the stability of gene silencing. Analyses of these mutants at the subtelomeres and the HMLα locus showed a similar derepression phenotype and suggest transient instability of both active and silent states of FLO11. We conclude that RRM3 and TOF1 interact differentially with the pol30 mutations to promote transient derepression or complete epigenetic conversions of FLO11. We suggest that the interaction between POL30, RRM3 and TOF1 is essential to maintain epigenetic stability at the studied loci.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.262006\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Mutations in the DNA processivity factor POL30 predisposes the FLO11 locus to epigenetic instability in S. cerevisiae.
The FLO genes in Saccharomyces cerevisiae are repressed by heterochromatin formation, involving histone deacetylases, transcription factors and non-coding RNAs. Here, we report that mutations in the processivity factor POL30 (PCNA) that show transient derepression at the subtelomeres and the mating-type loci do not derepress FLO loci. However, deletions of the replisome stability factors RRM3 and TOF1 along with pol30 mutations induced flocculation phenotypes. The phenotypes correlated with increased expression of reporter proteins driven by the FLO11 promoter, the frequency of silent to active conversions of FLO11, and reduced expression of the regulatory long non-coding RNAs ICR1 and PWR1. Alterations in the local replication landscape of FLO11 indicate a link between defects in the fork protection complex and the stability of gene silencing. Analyses of these mutants at the subtelomeres and the HMLα locus showed a similar derepression phenotype and suggest transient instability of both active and silent states of FLO11. We conclude that RRM3 and TOF1 interact differentially with the pol30 mutations to promote transient derepression or complete epigenetic conversions of FLO11. We suggest that the interaction between POL30, RRM3 and TOF1 is essential to maintain epigenetic stability at the studied loci.