Brenda Pei Chui Song, Jing Yi Lai, Yee Siew Choong, Nafiseh Khanbabaei, Andreas Latz, Theam Soon Lim
{"title":"从幼稚抗体噬菌体文库中分离抗肺泡瘤分泌蛋白 5 (ASP5) 抗体。","authors":"Brenda Pei Chui Song, Jing Yi Lai, Yee Siew Choong, Nafiseh Khanbabaei, Andreas Latz, Theam Soon Lim","doi":"10.1016/j.jim.2024.113776","DOIUrl":null,"url":null,"abstract":"<p><p>Ancylostoma species are parasitic nematodes that release a multitude of proteins to manipulate host immune responses to facilitate their survival. Among the released proteins, Ancylostoma-secreted protein 5 (ASP5) plays a pivotal role in mediating host-parasite interactions, making it a promising target for interventions against canine hookworm infections caused by Ancylostoma species. Antibody phage display, a widely used method for generating human monoclonal antibodies was employed in this study. A bacterial expression system was used to produce ASP5 for biopanning. A single-chain fragment variable (scFv) monoclonal antibody against ASP5 was generated from the naïve Human AntibodY LibrarY (HAYLY). The resulting scFv antibody was characterized to elucidate its antigen-binding properties. The identified monoclonal antibody showed good specificity and binding characteristics which highlighting its potential for diagnostic applications in combating hookworm infections.</p>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":" ","pages":"113776"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation of anti-Ancylostoma-secreted protein 5 (ASP5) antibody from a naïve antibody phage library.\",\"authors\":\"Brenda Pei Chui Song, Jing Yi Lai, Yee Siew Choong, Nafiseh Khanbabaei, Andreas Latz, Theam Soon Lim\",\"doi\":\"10.1016/j.jim.2024.113776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ancylostoma species are parasitic nematodes that release a multitude of proteins to manipulate host immune responses to facilitate their survival. Among the released proteins, Ancylostoma-secreted protein 5 (ASP5) plays a pivotal role in mediating host-parasite interactions, making it a promising target for interventions against canine hookworm infections caused by Ancylostoma species. Antibody phage display, a widely used method for generating human monoclonal antibodies was employed in this study. A bacterial expression system was used to produce ASP5 for biopanning. A single-chain fragment variable (scFv) monoclonal antibody against ASP5 was generated from the naïve Human AntibodY LibrarY (HAYLY). The resulting scFv antibody was characterized to elucidate its antigen-binding properties. The identified monoclonal antibody showed good specificity and binding characteristics which highlighting its potential for diagnostic applications in combating hookworm infections.</p>\",\"PeriodicalId\":16000,\"journal\":{\"name\":\"Journal of immunological methods\",\"volume\":\" \",\"pages\":\"113776\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jim.2024.113776\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunological methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jim.2024.113776","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Isolation of anti-Ancylostoma-secreted protein 5 (ASP5) antibody from a naïve antibody phage library.
Ancylostoma species are parasitic nematodes that release a multitude of proteins to manipulate host immune responses to facilitate their survival. Among the released proteins, Ancylostoma-secreted protein 5 (ASP5) plays a pivotal role in mediating host-parasite interactions, making it a promising target for interventions against canine hookworm infections caused by Ancylostoma species. Antibody phage display, a widely used method for generating human monoclonal antibodies was employed in this study. A bacterial expression system was used to produce ASP5 for biopanning. A single-chain fragment variable (scFv) monoclonal antibody against ASP5 was generated from the naïve Human AntibodY LibrarY (HAYLY). The resulting scFv antibody was characterized to elucidate its antigen-binding properties. The identified monoclonal antibody showed good specificity and binding characteristics which highlighting its potential for diagnostic applications in combating hookworm infections.
期刊介绍:
The Journal of Immunological Methods is devoted to covering techniques for: (1) Quantitating and detecting antibodies and/or antigens. (2) Purifying immunoglobulins, lymphokines and other molecules of the immune system. (3) Isolating antigens and other substances important in immunological processes. (4) Labelling antigens and antibodies. (5) Localizing antigens and/or antibodies in tissues and cells. (6) Detecting, and fractionating immunocompetent cells. (7) Assaying for cellular immunity. (8) Documenting cell-cell interactions. (9) Initiating immunity and unresponsiveness. (10) Transplanting tissues. (11) Studying items closely related to immunity such as complement, reticuloendothelial system and others. (12) Molecular techniques for studying immune cells and their receptors. (13) Imaging of the immune system. (14) Methods for production or their fragments in eukaryotic and prokaryotic cells.
In addition the journal will publish articles on novel methods for analysing the organization, structure and expression of genes for immunologically important molecules such as immunoglobulins, T cell receptors and accessory molecules involved in antigen recognition, processing and presentation. Submitted full length manuscripts should describe new methods of broad applicability to immunology and not simply the application of an established method to a particular substance - although papers describing such applications may be considered for publication as a short Technical Note. Review articles will also be published by the Journal of Immunological Methods. In general these manuscripts are by solicitation however anyone interested in submitting a review can contact the Reviews Editor and provide an outline of the proposed review.