铜绿假单胞菌中通过mexR、oprD和ftsI的重叠突变产生的高水平非碳青霉烯酶碳青霉烯耐药性。

IF 3.7 2区 生物学 Q2 MICROBIOLOGY
Yan Yang, Xue Li, Lang Sun, Xiu-Kun Wang, You-Wen Zhang, Jing Pang, Guo-Qing Li, Xin-Xin Hu, Tong-Ying Nie, Xin-Yi Yang, Jian-Hua Liu, Gerrit Brandis, Xue-Fu You, Cong-Ran Li
{"title":"铜绿假单胞菌中通过mexR、oprD和ftsI的重叠突变产生的高水平非碳青霉烯酶碳青霉烯耐药性。","authors":"Yan Yang, Xue Li, Lang Sun, Xiu-Kun Wang, You-Wen Zhang, Jing Pang, Guo-Qing Li, Xin-Xin Hu, Tong-Ying Nie, Xin-Yi Yang, Jian-Hua Liu, Gerrit Brandis, Xue-Fu You, Cong-Ran Li","doi":"10.1128/spectrum.01398-24","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant <i>Pseudomonas aeruginosa</i> (CRPA) is a global threat, but the mechanism of non-carbapenemase carbapenem resistance is still unclear. In the current study, we investigated the contributions of point mutations in <i>mexR</i>, <i>oprD</i>, and <i>ftsI</i> to carbapenem resistance in <i>P. aeruginosa</i> during <i>in vivo</i> evolution studies with consecutive clinical isolates. Real-time qPCR and Electrophoretic Mobility Shift Assay demonstrated that MexR (Gln55Pro) mutation increased MexAB efflux pump genes expression by altering MexR's binding capacity, leading to a four- to eight-fold increase in meropenem MIC in the Pae d1 Green ∆<i>mexR</i> and PAO1∆<i>mexR</i> mutants. The OprD (Trp415*) truncation affected porin structure, and the constructed mutant Pae d1 Green <i>oprD</i> Trp415* increased meropenem MIC by 16-fold (from 0.25 to 4 µg/mL). The contribution of <i>ftsI</i> mutation to meropenem resistance was confirmed by clinical linkage analysis and was estimated to cause a two-fold increase in meropenem MIC by comparing the resistant clinical isolate with the Pae d1 Green <i>oprD</i> Trp415*∆<i>mexR</i> double mutant. The study found that the oprD Trp415* allele alone accounts for the imipenem MIC in clinical isolates, while the ∆<i>mexR</i> and <i>ftsI</i> Arg504Cys alleles do not contribute to imipenem resistance. In conclusion, we identified and explored the contributions of <i>mexR</i>, <i>oprD,</i> and <i>ftsI</i> mutations to high level non-carbapenemase carbapenem resistance in <i>P. aeruginosa</i>. These findings highlight the interplay of different mutations in causing non-carbapenemase carbapenem-resistance in <i>P. aeruginosa</i>.</p><p><strong>Importance: </strong>The emergence of carbapenem-resistant <i>Pseudomonas aeruginosa</i> (CRPA) poses a significant global health threat, complicating treatment options for infections caused by this pathogen. Understanding the mechanisms behind non-carbapenemase carbapenem resistance is critical for developing effective therapeutic strategies. This study provides crucial insights into how specific point mutations in key genes-<i>mexR</i>, <i>oprD</i>, and <i>ftsI</i>-contribute to carbapenem resistance, particularly the MexR (Gln55Pro) mutation's effect on efflux pump expression and the OprD (Trp415*) truncation's impact on porin structure. The findings elucidate the complex interplay of these mutations, highlighting their roles in conferring high-level resistance, and underscore the imperative for continued research to inform therapeutic strategies against CRPA infections.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0139824"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High level non-carbapenemase carbapenem resistance by overlaying mutations of <i>mexR</i>, <i>oprD,</i> and <i>ftsI</i> in <i>Pseudomonas aeruginosa</i>.\",\"authors\":\"Yan Yang, Xue Li, Lang Sun, Xiu-Kun Wang, You-Wen Zhang, Jing Pang, Guo-Qing Li, Xin-Xin Hu, Tong-Ying Nie, Xin-Yi Yang, Jian-Hua Liu, Gerrit Brandis, Xue-Fu You, Cong-Ran Li\",\"doi\":\"10.1128/spectrum.01398-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbapenem-resistant <i>Pseudomonas aeruginosa</i> (CRPA) is a global threat, but the mechanism of non-carbapenemase carbapenem resistance is still unclear. In the current study, we investigated the contributions of point mutations in <i>mexR</i>, <i>oprD</i>, and <i>ftsI</i> to carbapenem resistance in <i>P. aeruginosa</i> during <i>in vivo</i> evolution studies with consecutive clinical isolates. Real-time qPCR and Electrophoretic Mobility Shift Assay demonstrated that MexR (Gln55Pro) mutation increased MexAB efflux pump genes expression by altering MexR's binding capacity, leading to a four- to eight-fold increase in meropenem MIC in the Pae d1 Green ∆<i>mexR</i> and PAO1∆<i>mexR</i> mutants. The OprD (Trp415*) truncation affected porin structure, and the constructed mutant Pae d1 Green <i>oprD</i> Trp415* increased meropenem MIC by 16-fold (from 0.25 to 4 µg/mL). The contribution of <i>ftsI</i> mutation to meropenem resistance was confirmed by clinical linkage analysis and was estimated to cause a two-fold increase in meropenem MIC by comparing the resistant clinical isolate with the Pae d1 Green <i>oprD</i> Trp415*∆<i>mexR</i> double mutant. The study found that the oprD Trp415* allele alone accounts for the imipenem MIC in clinical isolates, while the ∆<i>mexR</i> and <i>ftsI</i> Arg504Cys alleles do not contribute to imipenem resistance. In conclusion, we identified and explored the contributions of <i>mexR</i>, <i>oprD,</i> and <i>ftsI</i> mutations to high level non-carbapenemase carbapenem resistance in <i>P. aeruginosa</i>. These findings highlight the interplay of different mutations in causing non-carbapenemase carbapenem-resistance in <i>P. aeruginosa</i>.</p><p><strong>Importance: </strong>The emergence of carbapenem-resistant <i>Pseudomonas aeruginosa</i> (CRPA) poses a significant global health threat, complicating treatment options for infections caused by this pathogen. Understanding the mechanisms behind non-carbapenemase carbapenem resistance is critical for developing effective therapeutic strategies. This study provides crucial insights into how specific point mutations in key genes-<i>mexR</i>, <i>oprD</i>, and <i>ftsI</i>-contribute to carbapenem resistance, particularly the MexR (Gln55Pro) mutation's effect on efflux pump expression and the OprD (Trp415*) truncation's impact on porin structure. The findings elucidate the complex interplay of these mutations, highlighting their roles in conferring high-level resistance, and underscore the imperative for continued research to inform therapeutic strategies against CRPA infections.</p>\",\"PeriodicalId\":18670,\"journal\":{\"name\":\"Microbiology spectrum\",\"volume\":\" \",\"pages\":\"e0139824\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology spectrum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/spectrum.01398-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.01398-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耐碳青霉烯类的铜绿假单胞菌(CRPA)是一种全球性威胁,但非碳青霉烯酶碳青霉烯类耐药的机制仍不清楚。在本研究中,我们利用连续的临床分离株进行了体内进化研究,调查了mexR、oprD和ftsI的点突变对铜绿假单胞菌耐碳素类药物的贡献。实时 qPCR 和电泳迁移分析表明,MexR(Gln55Pro)突变通过改变 MexR 的结合能力增加了 MexAB 外排泵基因的表达,导致 Pae d1 Green ∆mexR 和 PAO1∆mexR 突变体的美罗培南 MIC 增加了四到八倍。OprD (Trp415*) 截断影响了孔蛋白的结构,构建的突变体 Pae d1 Green oprD Trp415* 使美罗培南的 MIC 增加了 16 倍(从 0.25 到 4 µg/mL)。临床关联分析证实了 ftsI 突变对美罗培南耐药性的贡献,通过比较耐药临床分离株与 Pae d1 Green oprD Trp415*∆mexR 双突变体,估计 ftsI 突变导致美罗培南 MIC 增加了两倍。研究发现,oprD Trp415* 等位基因单独导致了临床分离株的亚胺培南 MIC,而 ∆mexR 和 ftsI Arg504Cys 等位基因并不导致亚胺培南耐药。总之,我们发现并探讨了mexR、oprD和ftsI突变对铜绿假单胞菌高水平非碳青霉烯酶碳青霉烯耐药性的贡献。这些发现凸显了不同突变在导致铜绿假单胞菌对非碳青霉烯酶碳青霉烯类耐药中的相互作用:对碳青霉烯类耐药铜绿假单胞菌(CRPA)的出现对全球健康构成了重大威胁,使该病原体引起的感染的治疗方案复杂化。了解非碳青霉烯酶碳青霉烯类耐药性背后的机制对于制定有效的治疗策略至关重要。这项研究为了解关键基因--MexR、oprD 和 ftsI 的特定点突变如何导致碳青霉烯类耐药性,尤其是 MexR(Gln55Pro)突变对外排泵表达的影响和 OprD(Trp415*)截断对孔蛋白结构的影响提供了重要见解。研究结果阐明了这些突变之间复杂的相互作用,突出了它们在产生高水平耐药性方面的作用,并强调了继续研究以了解针对 CRPA 感染的治疗策略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High level non-carbapenemase carbapenem resistance by overlaying mutations of mexR, oprD, and ftsI in Pseudomonas aeruginosa.

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a global threat, but the mechanism of non-carbapenemase carbapenem resistance is still unclear. In the current study, we investigated the contributions of point mutations in mexR, oprD, and ftsI to carbapenem resistance in P. aeruginosa during in vivo evolution studies with consecutive clinical isolates. Real-time qPCR and Electrophoretic Mobility Shift Assay demonstrated that MexR (Gln55Pro) mutation increased MexAB efflux pump genes expression by altering MexR's binding capacity, leading to a four- to eight-fold increase in meropenem MIC in the Pae d1 Green ∆mexR and PAO1∆mexR mutants. The OprD (Trp415*) truncation affected porin structure, and the constructed mutant Pae d1 Green oprD Trp415* increased meropenem MIC by 16-fold (from 0.25 to 4 µg/mL). The contribution of ftsI mutation to meropenem resistance was confirmed by clinical linkage analysis and was estimated to cause a two-fold increase in meropenem MIC by comparing the resistant clinical isolate with the Pae d1 Green oprD Trp415*∆mexR double mutant. The study found that the oprD Trp415* allele alone accounts for the imipenem MIC in clinical isolates, while the ∆mexR and ftsI Arg504Cys alleles do not contribute to imipenem resistance. In conclusion, we identified and explored the contributions of mexR, oprD, and ftsI mutations to high level non-carbapenemase carbapenem resistance in P. aeruginosa. These findings highlight the interplay of different mutations in causing non-carbapenemase carbapenem-resistance in P. aeruginosa.

Importance: The emergence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a significant global health threat, complicating treatment options for infections caused by this pathogen. Understanding the mechanisms behind non-carbapenemase carbapenem resistance is critical for developing effective therapeutic strategies. This study provides crucial insights into how specific point mutations in key genes-mexR, oprD, and ftsI-contribute to carbapenem resistance, particularly the MexR (Gln55Pro) mutation's effect on efflux pump expression and the OprD (Trp415*) truncation's impact on porin structure. The findings elucidate the complex interplay of these mutations, highlighting their roles in conferring high-level resistance, and underscore the imperative for continued research to inform therapeutic strategies against CRPA infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信