Zirou Wang, Yan Liu, Chong Feng, Tianqi Li, Hongbao Xu, Yufan Ding, Weili Liu, Lingling Pu, Ran Li, Chongyi Ai, Zhaoli Chen, Xinxing Wang
{"title":"Osmundacetone 对类风湿性关节炎的治疗潜力:对破骨细胞生成的影响和机制","authors":"Zirou Wang, Yan Liu, Chong Feng, Tianqi Li, Hongbao Xu, Yufan Ding, Weili Liu, Lingling Pu, Ran Li, Chongyi Ai, Zhaoli Chen, Xinxing Wang","doi":"10.1016/j.ejphar.2024.177135","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to investigate the therapeutic potential of Osmundacetone (Osu), a natural plant product, for the treatment of rheumatoid arthritis (RA). The study revealed that Osu effectively reduced arthritis-induced swelling and bone destruction, as well as alleviating inflammation-related factors and oxidative stress in animal models. We focused the mechanism exploration on its regulatory mechanism on osteoclastogenesis in the next investigation. In vitro experiments demonstrated a dose-dependent inhibition of osteoclastic differentiation by Osu, as evidenced by tartrate resistant acid phosphatase (TRAP) staining and a reduction in osteoclastic differentiation markers observed through Western blotting analysis. And three different approaches Osu inhibiting osteoclastogenesis were found in our researches: (1) The binding of Receptor Activator of Nuclear Factor Kappa B (RANK) and Osu was revealed by the in-silico analysis. (2) According to 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining, Osu attenuated the level of reactive oxygen species (ROS), and western blotting studies revealed this effect was modulated by the regulation of Kelch-like ECH-associated protein 1 / Nuclear Factor erythroid 2-Related Factor 2 (Keap1/Nrf2) pathway. (3) Interestingly, we found that Osu increased the lipid peroxidation via downregulating the expression of glutathione peroxidase 4 (GPX4) at the same time as reducing the ROS, leading to the reduction of the fluidity of the membrane and the fusion of osteoclasts which could be reversed by using the ferroptosis inhibitor- Ferrostatin-1 (Fer-1). Overall, a natural compound to the existing therapeutics for rheumatoid arthritis was confirmed and a new strategy for inhibiting osteoclastogenesis was added.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177135"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Therapeutic Potential of Osmundacetone for Rheumatoid Arthritis: Effects and Mechanisms on Osteoclastogenesis.\",\"authors\":\"Zirou Wang, Yan Liu, Chong Feng, Tianqi Li, Hongbao Xu, Yufan Ding, Weili Liu, Lingling Pu, Ran Li, Chongyi Ai, Zhaoli Chen, Xinxing Wang\",\"doi\":\"10.1016/j.ejphar.2024.177135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study aimed to investigate the therapeutic potential of Osmundacetone (Osu), a natural plant product, for the treatment of rheumatoid arthritis (RA). The study revealed that Osu effectively reduced arthritis-induced swelling and bone destruction, as well as alleviating inflammation-related factors and oxidative stress in animal models. We focused the mechanism exploration on its regulatory mechanism on osteoclastogenesis in the next investigation. In vitro experiments demonstrated a dose-dependent inhibition of osteoclastic differentiation by Osu, as evidenced by tartrate resistant acid phosphatase (TRAP) staining and a reduction in osteoclastic differentiation markers observed through Western blotting analysis. And three different approaches Osu inhibiting osteoclastogenesis were found in our researches: (1) The binding of Receptor Activator of Nuclear Factor Kappa B (RANK) and Osu was revealed by the in-silico analysis. (2) According to 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining, Osu attenuated the level of reactive oxygen species (ROS), and western blotting studies revealed this effect was modulated by the regulation of Kelch-like ECH-associated protein 1 / Nuclear Factor erythroid 2-Related Factor 2 (Keap1/Nrf2) pathway. (3) Interestingly, we found that Osu increased the lipid peroxidation via downregulating the expression of glutathione peroxidase 4 (GPX4) at the same time as reducing the ROS, leading to the reduction of the fluidity of the membrane and the fusion of osteoclasts which could be reversed by using the ferroptosis inhibitor- Ferrostatin-1 (Fer-1). Overall, a natural compound to the existing therapeutics for rheumatoid arthritis was confirmed and a new strategy for inhibiting osteoclastogenesis was added.</p>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\" \",\"pages\":\"177135\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejphar.2024.177135\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2024.177135","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在探讨天然植物产品奥斯蒙德丙酮(Osu)治疗类风湿性关节炎(RA)的潜力。研究发现,Osu 能有效减轻关节炎引起的肿胀和骨质破坏,并能缓解动物模型中的炎症相关因子和氧化应激。在接下来的研究中,我们重点探讨了其对破骨细胞生成的调控机制。体外实验表明,Osu 对破骨细胞分化具有剂量依赖性抑制作用,酒石酸抗性酸性磷酸酶(TRAP)染色和 Western 印迹分析观察到的破骨细胞分化标记物的减少都证明了这一点。我们的研究发现了三种不同的 Osu 抑制破骨细胞生成的方法:(1)分子内分析揭示了核因子卡巴 B 受体活化因子(RANK)与 Osu 的结合。(2)2,7-二氯二氢荧光素二乙酸酯(DCFH-DA)染色显示,Osu 可降低活性氧(ROS)的水平,Western 印迹研究表明,该作用受 Kelch-like ECH-associated protein 1 / Nuclear Factor erythroid 2-Related Factor 2(Keap1/Nrf2)通路的调控。(3)有趣的是,我们发现大苏在减少 ROS 的同时,还通过下调谷胱甘肽过氧化物酶 4(GPX4)的表达增加了脂质过氧化,导致膜的流动性降低和破骨细胞的融合,而使用铁蛋白沉积抑制剂-铁前列素-1(Fer-1)可以逆转这种情况。总之,在现有治疗类风湿性关节炎的药物中,一种天然化合物得到了证实,并且增加了一种抑制破骨细胞生成的新策略。
The Therapeutic Potential of Osmundacetone for Rheumatoid Arthritis: Effects and Mechanisms on Osteoclastogenesis.
The present study aimed to investigate the therapeutic potential of Osmundacetone (Osu), a natural plant product, for the treatment of rheumatoid arthritis (RA). The study revealed that Osu effectively reduced arthritis-induced swelling and bone destruction, as well as alleviating inflammation-related factors and oxidative stress in animal models. We focused the mechanism exploration on its regulatory mechanism on osteoclastogenesis in the next investigation. In vitro experiments demonstrated a dose-dependent inhibition of osteoclastic differentiation by Osu, as evidenced by tartrate resistant acid phosphatase (TRAP) staining and a reduction in osteoclastic differentiation markers observed through Western blotting analysis. And three different approaches Osu inhibiting osteoclastogenesis were found in our researches: (1) The binding of Receptor Activator of Nuclear Factor Kappa B (RANK) and Osu was revealed by the in-silico analysis. (2) According to 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining, Osu attenuated the level of reactive oxygen species (ROS), and western blotting studies revealed this effect was modulated by the regulation of Kelch-like ECH-associated protein 1 / Nuclear Factor erythroid 2-Related Factor 2 (Keap1/Nrf2) pathway. (3) Interestingly, we found that Osu increased the lipid peroxidation via downregulating the expression of glutathione peroxidase 4 (GPX4) at the same time as reducing the ROS, leading to the reduction of the fluidity of the membrane and the fusion of osteoclasts which could be reversed by using the ferroptosis inhibitor- Ferrostatin-1 (Fer-1). Overall, a natural compound to the existing therapeutics for rheumatoid arthritis was confirmed and a new strategy for inhibiting osteoclastogenesis was added.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.