{"title":"整合放射线组学和基于三维自动编码器的非小细胞肺癌生存分析特征。","authors":"Meri Ferretti , Valentina D.A. Corino","doi":"10.1016/j.cmpb.2024.108496","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objectives</h3><div>The aim of this study is to develop a radiomic and deep learning-based signature for survival analysis of patients with Non-Small Cell Lung Cancer.</div></div><div><h3>Methods</h3><div>Four-hundred twenty-two patients from “Lung1” dataset were included in the study. A 3D convolutional autoencoder (AE) was built and features from the latent space extracted for further analysis. Radiomic features were derived from the 3D volume of the tumor region using PyRadiomics. Both radiomic and AE-based features underwent feature selection, by removing: i) highly correlated and ii) constant features. The selected variables were then used to derive both mono-domain (radiomics, AE and clinic) and multi-domain signatures fitting a Cox Proportional Hazard model with LASSO penalization and evaluated considering the concordance (C)-index as performance metric.</div></div><div><h3>Results</h3><div>Both mono-domain and multi-domain signatures could significantly differentiate high risk from low risk patients. Among the mono-domain signatures, the highest hazard ratio (HR) in the test set was obtained using radiomics (HR = 1.5428) followed by the AE-based signature (HR = 1.5012) and the clinical signature (HR = 1.4770). The best overall performance was achieved by combining all three signatures, resulting in the highest HR (HR = 1.7383), while the combination of AE-based and clinical signatures yielded the highest C-index (C-index = 0.6309).</div></div><div><h3>Conclusions</h3><div>These preliminary results show that combining information carried by AE, radiomic and clinical domain shows potential for improving the prediction of overall survival in NSCLC patients.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"258 ","pages":"Article 108496"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating radiomic and 3D autoencoder-based features for Non-Small Cell Lung Cancer survival analysis\",\"authors\":\"Meri Ferretti , Valentina D.A. Corino\",\"doi\":\"10.1016/j.cmpb.2024.108496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objectives</h3><div>The aim of this study is to develop a radiomic and deep learning-based signature for survival analysis of patients with Non-Small Cell Lung Cancer.</div></div><div><h3>Methods</h3><div>Four-hundred twenty-two patients from “Lung1” dataset were included in the study. A 3D convolutional autoencoder (AE) was built and features from the latent space extracted for further analysis. Radiomic features were derived from the 3D volume of the tumor region using PyRadiomics. Both radiomic and AE-based features underwent feature selection, by removing: i) highly correlated and ii) constant features. The selected variables were then used to derive both mono-domain (radiomics, AE and clinic) and multi-domain signatures fitting a Cox Proportional Hazard model with LASSO penalization and evaluated considering the concordance (C)-index as performance metric.</div></div><div><h3>Results</h3><div>Both mono-domain and multi-domain signatures could significantly differentiate high risk from low risk patients. Among the mono-domain signatures, the highest hazard ratio (HR) in the test set was obtained using radiomics (HR = 1.5428) followed by the AE-based signature (HR = 1.5012) and the clinical signature (HR = 1.4770). The best overall performance was achieved by combining all three signatures, resulting in the highest HR (HR = 1.7383), while the combination of AE-based and clinical signatures yielded the highest C-index (C-index = 0.6309).</div></div><div><h3>Conclusions</h3><div>These preliminary results show that combining information carried by AE, radiomic and clinical domain shows potential for improving the prediction of overall survival in NSCLC patients.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"258 \",\"pages\":\"Article 108496\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004899\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004899","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Integrating radiomic and 3D autoencoder-based features for Non-Small Cell Lung Cancer survival analysis
Background and objectives
The aim of this study is to develop a radiomic and deep learning-based signature for survival analysis of patients with Non-Small Cell Lung Cancer.
Methods
Four-hundred twenty-two patients from “Lung1” dataset were included in the study. A 3D convolutional autoencoder (AE) was built and features from the latent space extracted for further analysis. Radiomic features were derived from the 3D volume of the tumor region using PyRadiomics. Both radiomic and AE-based features underwent feature selection, by removing: i) highly correlated and ii) constant features. The selected variables were then used to derive both mono-domain (radiomics, AE and clinic) and multi-domain signatures fitting a Cox Proportional Hazard model with LASSO penalization and evaluated considering the concordance (C)-index as performance metric.
Results
Both mono-domain and multi-domain signatures could significantly differentiate high risk from low risk patients. Among the mono-domain signatures, the highest hazard ratio (HR) in the test set was obtained using radiomics (HR = 1.5428) followed by the AE-based signature (HR = 1.5012) and the clinical signature (HR = 1.4770). The best overall performance was achieved by combining all three signatures, resulting in the highest HR (HR = 1.7383), while the combination of AE-based and clinical signatures yielded the highest C-index (C-index = 0.6309).
Conclusions
These preliminary results show that combining information carried by AE, radiomic and clinical domain shows potential for improving the prediction of overall survival in NSCLC patients.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.