Myeong-Sang Yu , Jingyu Lee , Yunhyeok Lee , Daeahn Cho , Kwang-Seok Oh , Jidon Jang , Nuong Thi Nong , Hyang-Mi Lee , Dokyun Na
{"title":"hERGBoost:用于定量预测 hERG 通道阻滞剂 IC50 的梯度提升模型。","authors":"Myeong-Sang Yu , Jingyu Lee , Yunhyeok Lee , Daeahn Cho , Kwang-Seok Oh , Jidon Jang , Nuong Thi Nong , Hyang-Mi Lee , Dokyun Na","doi":"10.1016/j.compbiomed.2024.109416","DOIUrl":null,"url":null,"abstract":"<div><div>The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC<sub>50</sub> values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations. To address the need for more precise, quantitative predictions, we developed hERGBoost, a cutting-edge machine learning model employing a gradient-boosting algorithm. This model demonstrates superior accuracy in predicting the IC<sub>50</sub> of drug candidates. Trained on a specially curated dataset for this study, hERGBoost not only exhibited excellent performance in external validation, achieving an <em>R</em><sup>2</sup> score of 0.394 and a low root mean square error of 0.616 but also significantly outstripped previous models in both qualitative and quantitative assessments. Representing a notable leap forward in the prediction of hERG channel blockers, the hERGBoost model and its datasets are freely available to the drug discovery community on our web server at. <span><span>http://ssbio.cau.ac.kr/software/hergboost</span><svg><path></path></svg></span> This resource promises to be invaluable in advancing safer pharmaceutical development.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109416"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers\",\"authors\":\"Myeong-Sang Yu , Jingyu Lee , Yunhyeok Lee , Daeahn Cho , Kwang-Seok Oh , Jidon Jang , Nuong Thi Nong , Hyang-Mi Lee , Dokyun Na\",\"doi\":\"10.1016/j.compbiomed.2024.109416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC<sub>50</sub> values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations. To address the need for more precise, quantitative predictions, we developed hERGBoost, a cutting-edge machine learning model employing a gradient-boosting algorithm. This model demonstrates superior accuracy in predicting the IC<sub>50</sub> of drug candidates. Trained on a specially curated dataset for this study, hERGBoost not only exhibited excellent performance in external validation, achieving an <em>R</em><sup>2</sup> score of 0.394 and a low root mean square error of 0.616 but also significantly outstripped previous models in both qualitative and quantitative assessments. Representing a notable leap forward in the prediction of hERG channel blockers, the hERGBoost model and its datasets are freely available to the drug discovery community on our web server at. <span><span>http://ssbio.cau.ac.kr/software/hergboost</span><svg><path></path></svg></span> This resource promises to be invaluable in advancing safer pharmaceutical development.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"184 \",\"pages\":\"Article 109416\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524015014\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524015014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
hERGBoost: A gradient boosting model for quantitative IC50 prediction of hERG channel blockers
The human ether-a-go-go-related gene (hERG) potassium channel is pivotal in drug discovery due to its susceptibility to blockage by drug candidate molecules, which can cause severe cardiotoxic effects. Consequently, identifying and excluding potential hERG channel blockers at the earliest stages of drug development is crucial. Most traditional machine learning models predict a molecule's cardiotoxicity or non-cardiotoxicity typically at 10 μM, which doesn't account for compounds with low IC50 values that are non-toxic at therapeutic levels due to their high effectiveness at lower concentrations. To address the need for more precise, quantitative predictions, we developed hERGBoost, a cutting-edge machine learning model employing a gradient-boosting algorithm. This model demonstrates superior accuracy in predicting the IC50 of drug candidates. Trained on a specially curated dataset for this study, hERGBoost not only exhibited excellent performance in external validation, achieving an R2 score of 0.394 and a low root mean square error of 0.616 but also significantly outstripped previous models in both qualitative and quantitative assessments. Representing a notable leap forward in the prediction of hERG channel blockers, the hERGBoost model and its datasets are freely available to the drug discovery community on our web server at. http://ssbio.cau.ac.kr/software/hergboost This resource promises to be invaluable in advancing safer pharmaceutical development.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.