CMTT-JTracker:为自动细胞系构建服务的完全测试时间自适应框架。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Liuyin Chen, Sanyuan Fu, Zijun Zhang
{"title":"CMTT-JTracker:为自动细胞系构建服务的完全测试时间自适应框架。","authors":"Liuyin Chen, Sanyuan Fu, Zijun Zhang","doi":"10.1093/bib/bbae591","DOIUrl":null,"url":null,"abstract":"<p><p>Cell tracking is an essential function needed in automated cellular activity monitoring. In practice, processing methods striking a balance between computational efficiency and accuracy as well as demonstrating robust generalizability across diverse cell datasets are highly desired. This paper develops a central-metric fully test-time adaptive framework for cell tracking (CMTT-JTracker). Firstly, a CMTT mechanism is designed for the pre-segmentation of cell images, which enables extracting target information at different resolutions without additional training. Next, a multi-task learning network with the spatial attention scheme is developed to simultaneously realize detection and re-identification tasks based on features extracted by CMTT. Experimental results demonstrate that the CMTT-JTracker exhibits remarkable biological and tracking performance compared with benchmarking tracking methods. It achieves a multiple object tracking accuracy (MOTA) of $0.894$ on Fluo-N2DH-SIM+ and a MOTA of $0.850$ on PhC-C2DL-PSC. Experimental results further confirm that the CMTT applied solely as a segmentation unit outperforms the SOTA segmentation benchmarks on various datasets, particularly excelling in scenarios with dense cells. The Dice coefficients of the CMTT range from a high of $0.928$ to a low of $0.758$ across different datasets.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570544/pdf/","citationCount":"0","resultStr":"{\"title\":\"CMTT-JTracker: a fully test-time adaptive framework serving automated cell lineage construction.\",\"authors\":\"Liuyin Chen, Sanyuan Fu, Zijun Zhang\",\"doi\":\"10.1093/bib/bbae591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell tracking is an essential function needed in automated cellular activity monitoring. In practice, processing methods striking a balance between computational efficiency and accuracy as well as demonstrating robust generalizability across diverse cell datasets are highly desired. This paper develops a central-metric fully test-time adaptive framework for cell tracking (CMTT-JTracker). Firstly, a CMTT mechanism is designed for the pre-segmentation of cell images, which enables extracting target information at different resolutions without additional training. Next, a multi-task learning network with the spatial attention scheme is developed to simultaneously realize detection and re-identification tasks based on features extracted by CMTT. Experimental results demonstrate that the CMTT-JTracker exhibits remarkable biological and tracking performance compared with benchmarking tracking methods. It achieves a multiple object tracking accuracy (MOTA) of $0.894$ on Fluo-N2DH-SIM+ and a MOTA of $0.850$ on PhC-C2DL-PSC. Experimental results further confirm that the CMTT applied solely as a segmentation unit outperforms the SOTA segmentation benchmarks on various datasets, particularly excelling in scenarios with dense cells. The Dice coefficients of the CMTT range from a high of $0.928$ to a low of $0.758$ across different datasets.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570544/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae591\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae591","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细胞追踪是自动细胞活动监测所需的一项基本功能。在实践中,人们非常需要在计算效率和准确性之间取得平衡的处理方法,以及在各种细胞数据集上表现出强大的通用性。本文开发了一种用于细胞追踪的中心计量全测试时间自适应框架(CMTT-JTracker)。首先,设计了一种用于细胞图像预分割的 CMTT 机制,无需额外训练即可提取不同分辨率下的目标信息。然后,利用空间注意力方案开发了一个多任务学习网络,根据 CMTT 提取的特征同时实现检测和再识别任务。实验结果表明,与基准跟踪方法相比,CMTT-JTracker 具有显著的生物和跟踪性能。它在 Fluo-N2DH-SIM+ 上实现了 0.894 美元的多目标跟踪精度(MOTA),在 PhC-C2DL-PSC 上实现了 0.850 美元的多目标跟踪精度(MOTA)。实验结果进一步证实,仅作为分割单元应用的 CMTT 在各种数据集上的表现均优于 SOTA 分割基准,尤其是在密集小区场景中。在不同的数据集上,CMTT 的 Dice 系数从最高的 0.928 美元到最低的 0.758 美元不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMTT-JTracker: a fully test-time adaptive framework serving automated cell lineage construction.

Cell tracking is an essential function needed in automated cellular activity monitoring. In practice, processing methods striking a balance between computational efficiency and accuracy as well as demonstrating robust generalizability across diverse cell datasets are highly desired. This paper develops a central-metric fully test-time adaptive framework for cell tracking (CMTT-JTracker). Firstly, a CMTT mechanism is designed for the pre-segmentation of cell images, which enables extracting target information at different resolutions without additional training. Next, a multi-task learning network with the spatial attention scheme is developed to simultaneously realize detection and re-identification tasks based on features extracted by CMTT. Experimental results demonstrate that the CMTT-JTracker exhibits remarkable biological and tracking performance compared with benchmarking tracking methods. It achieves a multiple object tracking accuracy (MOTA) of $0.894$ on Fluo-N2DH-SIM+ and a MOTA of $0.850$ on PhC-C2DL-PSC. Experimental results further confirm that the CMTT applied solely as a segmentation unit outperforms the SOTA segmentation benchmarks on various datasets, particularly excelling in scenarios with dense cells. The Dice coefficients of the CMTT range from a high of $0.928$ to a low of $0.758$ across different datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信