{"title":"CMTT-JTracker:为自动细胞系构建服务的完全测试时间自适应框架。","authors":"Liuyin Chen, Sanyuan Fu, Zijun Zhang","doi":"10.1093/bib/bbae591","DOIUrl":null,"url":null,"abstract":"<p><p>Cell tracking is an essential function needed in automated cellular activity monitoring. In practice, processing methods striking a balance between computational efficiency and accuracy as well as demonstrating robust generalizability across diverse cell datasets are highly desired. This paper develops a central-metric fully test-time adaptive framework for cell tracking (CMTT-JTracker). Firstly, a CMTT mechanism is designed for the pre-segmentation of cell images, which enables extracting target information at different resolutions without additional training. Next, a multi-task learning network with the spatial attention scheme is developed to simultaneously realize detection and re-identification tasks based on features extracted by CMTT. Experimental results demonstrate that the CMTT-JTracker exhibits remarkable biological and tracking performance compared with benchmarking tracking methods. It achieves a multiple object tracking accuracy (MOTA) of $0.894$ on Fluo-N2DH-SIM+ and a MOTA of $0.850$ on PhC-C2DL-PSC. Experimental results further confirm that the CMTT applied solely as a segmentation unit outperforms the SOTA segmentation benchmarks on various datasets, particularly excelling in scenarios with dense cells. The Dice coefficients of the CMTT range from a high of $0.928$ to a low of $0.758$ across different datasets.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570544/pdf/","citationCount":"0","resultStr":"{\"title\":\"CMTT-JTracker: a fully test-time adaptive framework serving automated cell lineage construction.\",\"authors\":\"Liuyin Chen, Sanyuan Fu, Zijun Zhang\",\"doi\":\"10.1093/bib/bbae591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell tracking is an essential function needed in automated cellular activity monitoring. In practice, processing methods striking a balance between computational efficiency and accuracy as well as demonstrating robust generalizability across diverse cell datasets are highly desired. This paper develops a central-metric fully test-time adaptive framework for cell tracking (CMTT-JTracker). Firstly, a CMTT mechanism is designed for the pre-segmentation of cell images, which enables extracting target information at different resolutions without additional training. Next, a multi-task learning network with the spatial attention scheme is developed to simultaneously realize detection and re-identification tasks based on features extracted by CMTT. Experimental results demonstrate that the CMTT-JTracker exhibits remarkable biological and tracking performance compared with benchmarking tracking methods. It achieves a multiple object tracking accuracy (MOTA) of $0.894$ on Fluo-N2DH-SIM+ and a MOTA of $0.850$ on PhC-C2DL-PSC. Experimental results further confirm that the CMTT applied solely as a segmentation unit outperforms the SOTA segmentation benchmarks on various datasets, particularly excelling in scenarios with dense cells. The Dice coefficients of the CMTT range from a high of $0.928$ to a low of $0.758$ across different datasets.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570544/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae591\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae591","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Cell tracking is an essential function needed in automated cellular activity monitoring. In practice, processing methods striking a balance between computational efficiency and accuracy as well as demonstrating robust generalizability across diverse cell datasets are highly desired. This paper develops a central-metric fully test-time adaptive framework for cell tracking (CMTT-JTracker). Firstly, a CMTT mechanism is designed for the pre-segmentation of cell images, which enables extracting target information at different resolutions without additional training. Next, a multi-task learning network with the spatial attention scheme is developed to simultaneously realize detection and re-identification tasks based on features extracted by CMTT. Experimental results demonstrate that the CMTT-JTracker exhibits remarkable biological and tracking performance compared with benchmarking tracking methods. It achieves a multiple object tracking accuracy (MOTA) of $0.894$ on Fluo-N2DH-SIM+ and a MOTA of $0.850$ on PhC-C2DL-PSC. Experimental results further confirm that the CMTT applied solely as a segmentation unit outperforms the SOTA segmentation benchmarks on various datasets, particularly excelling in scenarios with dense cells. The Dice coefficients of the CMTT range from a high of $0.928$ to a low of $0.758$ across different datasets.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.