Soon-Young Lee, Seung-Sik Cho, Kang Min Han, Min-Jae Lee, Taeho Ahn, Byungcheol Han, Chun-Sik Bae, Dae-Hun Park
{"title":"高丽红参通过下调 URAT1 和上调 OAT1 和 OAT3 改善血清尿酸水平","authors":"Soon-Young Lee, Seung-Sik Cho, Kang Min Han, Min-Jae Lee, Taeho Ahn, Byungcheol Han, Chun-Sik Bae, Dae-Hun Park","doi":"10.1248/bpb.b24-00293","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperuricemia is caused by an imbalance of uric acid and is associated with many diseases. Although gout which is one of hyperuricemia-related diseases is curable with anti-hyperuricemic drugs some medications have side effects, such as hypersensitivity in patients with circulatory system disorders, flare reoccurrences, and increased cardiac risk. This study consisted of test tube (xanthine oxidase's inhibition) and animal study. Animal study using with ICR mice was composed of control, potassium oxonate-induced hyperuricemia, allopurinol, and 3 Korean red ginseng water extract (KRGWE) treatment groups (62.5; 125, and 500 mg/kg). We orally administered KRGWE once a day for 7 d to induce hyperuricemia and injected PO 2 h before the final KRGWE administration. We measured serum uric acid, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen, and creatinine and analyzed the genes such as organic anion transport (OAT)-1, OAT-3, and urate transport (URAT)-1. KRGWE dose-dependently controlled xanthine oxidase activity in the serum and completely inhibited serum uric acid. KRGWE affected both uric acid excretion-related and uric acid reabsorption-related gene expression. KRGWE stimulated uric acid excretion-related gene expressions, such as OAT-1 and OAT-3, but inhibited uric acid reabsorption-related gene expression, such as URAT-1. KRGWE improved liver and kidney functioning. KRGWE improved liver/kidney functioning and is promising anti-hyperuricemic agent which can control serum uric acid via downregulating URAT1 and upregulating OAT1 and OAT3.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Korean Red Ginseng Ameliorates the Level of Serum Uric Acid via Downregulating URAT1 and Upregulating OAT1 and OAT3.\",\"authors\":\"Soon-Young Lee, Seung-Sik Cho, Kang Min Han, Min-Jae Lee, Taeho Ahn, Byungcheol Han, Chun-Sik Bae, Dae-Hun Park\",\"doi\":\"10.1248/bpb.b24-00293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperuricemia is caused by an imbalance of uric acid and is associated with many diseases. Although gout which is one of hyperuricemia-related diseases is curable with anti-hyperuricemic drugs some medications have side effects, such as hypersensitivity in patients with circulatory system disorders, flare reoccurrences, and increased cardiac risk. This study consisted of test tube (xanthine oxidase's inhibition) and animal study. Animal study using with ICR mice was composed of control, potassium oxonate-induced hyperuricemia, allopurinol, and 3 Korean red ginseng water extract (KRGWE) treatment groups (62.5; 125, and 500 mg/kg). We orally administered KRGWE once a day for 7 d to induce hyperuricemia and injected PO 2 h before the final KRGWE administration. We measured serum uric acid, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen, and creatinine and analyzed the genes such as organic anion transport (OAT)-1, OAT-3, and urate transport (URAT)-1. KRGWE dose-dependently controlled xanthine oxidase activity in the serum and completely inhibited serum uric acid. KRGWE affected both uric acid excretion-related and uric acid reabsorption-related gene expression. KRGWE stimulated uric acid excretion-related gene expressions, such as OAT-1 and OAT-3, but inhibited uric acid reabsorption-related gene expression, such as URAT-1. KRGWE improved liver and kidney functioning. KRGWE improved liver/kidney functioning and is promising anti-hyperuricemic agent which can control serum uric acid via downregulating URAT1 and upregulating OAT1 and OAT3.</p>\",\"PeriodicalId\":8955,\"journal\":{\"name\":\"Biological & pharmaceutical bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b24-00293\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Korean Red Ginseng Ameliorates the Level of Serum Uric Acid via Downregulating URAT1 and Upregulating OAT1 and OAT3.
Hyperuricemia is caused by an imbalance of uric acid and is associated with many diseases. Although gout which is one of hyperuricemia-related diseases is curable with anti-hyperuricemic drugs some medications have side effects, such as hypersensitivity in patients with circulatory system disorders, flare reoccurrences, and increased cardiac risk. This study consisted of test tube (xanthine oxidase's inhibition) and animal study. Animal study using with ICR mice was composed of control, potassium oxonate-induced hyperuricemia, allopurinol, and 3 Korean red ginseng water extract (KRGWE) treatment groups (62.5; 125, and 500 mg/kg). We orally administered KRGWE once a day for 7 d to induce hyperuricemia and injected PO 2 h before the final KRGWE administration. We measured serum uric acid, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen, and creatinine and analyzed the genes such as organic anion transport (OAT)-1, OAT-3, and urate transport (URAT)-1. KRGWE dose-dependently controlled xanthine oxidase activity in the serum and completely inhibited serum uric acid. KRGWE affected both uric acid excretion-related and uric acid reabsorption-related gene expression. KRGWE stimulated uric acid excretion-related gene expressions, such as OAT-1 and OAT-3, but inhibited uric acid reabsorption-related gene expression, such as URAT-1. KRGWE improved liver and kidney functioning. KRGWE improved liver/kidney functioning and is promising anti-hyperuricemic agent which can control serum uric acid via downregulating URAT1 and upregulating OAT1 and OAT3.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.