氧化锰掺杂混合脂质纳米颗粒通过氧气生成和 STING 激活增强 mRNA 疫苗的效力

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinqun Gan, Jiaqi Lei, Yongcan Li, Meixin Lu, Xinyang Yu, Guocan Yu
{"title":"氧化锰掺杂混合脂质纳米颗粒通过氧气生成和 STING 激活增强 mRNA 疫苗的效力","authors":"Jinqun Gan, Jiaqi Lei, Yongcan Li, Meixin Lu, Xinyang Yu, Guocan Yu","doi":"10.1021/jacs.4c12166","DOIUrl":null,"url":null,"abstract":"<p><p>Messenger RNA (mRNA) vaccines have exhibited enormous potential in the treatment of human diseases; however, their widespread applications are curtailed by the induction of reactive oxygen species during mRNA translation, which greatly compromises the translation efficiency. Herein, we present a robust strategy with the capability to substantially enhance the efficacy of the mRNA vaccine through promoting mRNA translation and stimulator of interferon genes (STING) activation. The strategy entails the coassembly of small-sized manganese oxide nanoparticles (Mn<sub>3</sub>O<sub>4</sub> NPs) with lipid nanoparticles (LNPs) as the hybrid delivery vehicle (MnLNPs) for the fabrication of mRNA vaccine. The acquired MnLNPs proficiently scavenge reactive oxygen species (ROS) produced during mRNA translation and facilitate oxygen production, thereby boosting adenosine triphosphate (ATP) synthesis and augmenting mRNA translation. Furthermore, MnLNPs effectively bolster the antigen presentation and maturation of dendritic cells by activating the cGAS-STING pathway. <i>In vivo</i> studies demonstrate that mRNA vaccine prepared from MnLNPs markedly enhances the translation of antigen-encoding mRNA compared to LNPs, leading to superior antitumor efficacy. The tumor-suppressive capabilities of MnLNPs@mRNA are further promoted by synergizing with immune checkpoint blockade, underscoring MnLNPs-based mRNA vaccine as an exceptionally promising avenue in cancer immunotherapy.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese Oxide-Incorporated Hybrid Lipid Nanoparticles Amplify the Potency of mRNA Vaccine via Oxygen Generation and STING Activation.\",\"authors\":\"Jinqun Gan, Jiaqi Lei, Yongcan Li, Meixin Lu, Xinyang Yu, Guocan Yu\",\"doi\":\"10.1021/jacs.4c12166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Messenger RNA (mRNA) vaccines have exhibited enormous potential in the treatment of human diseases; however, their widespread applications are curtailed by the induction of reactive oxygen species during mRNA translation, which greatly compromises the translation efficiency. Herein, we present a robust strategy with the capability to substantially enhance the efficacy of the mRNA vaccine through promoting mRNA translation and stimulator of interferon genes (STING) activation. The strategy entails the coassembly of small-sized manganese oxide nanoparticles (Mn<sub>3</sub>O<sub>4</sub> NPs) with lipid nanoparticles (LNPs) as the hybrid delivery vehicle (MnLNPs) for the fabrication of mRNA vaccine. The acquired MnLNPs proficiently scavenge reactive oxygen species (ROS) produced during mRNA translation and facilitate oxygen production, thereby boosting adenosine triphosphate (ATP) synthesis and augmenting mRNA translation. Furthermore, MnLNPs effectively bolster the antigen presentation and maturation of dendritic cells by activating the cGAS-STING pathway. <i>In vivo</i> studies demonstrate that mRNA vaccine prepared from MnLNPs markedly enhances the translation of antigen-encoding mRNA compared to LNPs, leading to superior antitumor efficacy. The tumor-suppressive capabilities of MnLNPs@mRNA are further promoted by synergizing with immune checkpoint blockade, underscoring MnLNPs-based mRNA vaccine as an exceptionally promising avenue in cancer immunotherapy.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c12166\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12166","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Manganese Oxide-Incorporated Hybrid Lipid Nanoparticles Amplify the Potency of mRNA Vaccine via Oxygen Generation and STING Activation.

Manganese Oxide-Incorporated Hybrid Lipid Nanoparticles Amplify the Potency of mRNA Vaccine via Oxygen Generation and STING Activation.

Messenger RNA (mRNA) vaccines have exhibited enormous potential in the treatment of human diseases; however, their widespread applications are curtailed by the induction of reactive oxygen species during mRNA translation, which greatly compromises the translation efficiency. Herein, we present a robust strategy with the capability to substantially enhance the efficacy of the mRNA vaccine through promoting mRNA translation and stimulator of interferon genes (STING) activation. The strategy entails the coassembly of small-sized manganese oxide nanoparticles (Mn3O4 NPs) with lipid nanoparticles (LNPs) as the hybrid delivery vehicle (MnLNPs) for the fabrication of mRNA vaccine. The acquired MnLNPs proficiently scavenge reactive oxygen species (ROS) produced during mRNA translation and facilitate oxygen production, thereby boosting adenosine triphosphate (ATP) synthesis and augmenting mRNA translation. Furthermore, MnLNPs effectively bolster the antigen presentation and maturation of dendritic cells by activating the cGAS-STING pathway. In vivo studies demonstrate that mRNA vaccine prepared from MnLNPs markedly enhances the translation of antigen-encoding mRNA compared to LNPs, leading to superior antitumor efficacy. The tumor-suppressive capabilities of MnLNPs@mRNA are further promoted by synergizing with immune checkpoint blockade, underscoring MnLNPs-based mRNA vaccine as an exceptionally promising avenue in cancer immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信