利用可见光和量子点合成氨。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Journal of the American Chemical Society Pub Date : 2024-11-27 Epub Date: 2024-11-17 DOI:10.1021/jacs.4c06713
Vanshika Jain, Shreya Tyagi, Pradyut Roy, Pramod P Pillai
{"title":"利用可见光和量子点合成氨。","authors":"Vanshika Jain, Shreya Tyagi, Pradyut Roy, Pramod P Pillai","doi":"10.1021/jacs.4c06713","DOIUrl":null,"url":null,"abstract":"<p><p>Light-assisted synthesis of ammonia from nitrate and nitrite sources is a sustainable approach to reduce the burden of the energy-intensive Haber-Bosch process. However, poor selectivity and the need for UV-active photocatalysts are the current bottlenecks in the synthesis of ammonia from nitrate and nitrite sources. Herein, we introduce selective visible-light-driven ammonia production from nitrate and nitrite ions with indium phosphide quantum dots (InP QDs) as the photocatalyst. The presence of catalytic indium sites and microenvironment modulation through an interplay of catalyst-reactant interactions resulted in efficient and selective ammonia formation under visible light. Ammonia was produced in an attractive yield of ∼94% in both aqueous and gaseous phases within 2 h of visible-light irradiation at room temperature. A decent formation of ammonia was observed under sunlight as well, strengthening the translational prospects of InP QD photocatalysts. Mechanistic investigations ascertained a negligible role of competing hydrogen evolution in direct nitrate reduction, confirming the active participation of photoexcited charge carriers from InP QDs in the ammonia synthesis. Kinetic studies revealed the energetically challenging nitrate-to-nitrite conversion as the rate-determining step, with subsequent reactions proceeding with ∼100% conversion to yield ammonia. A series of experiments concluded that water is the proton source in the InP QD-photocatalyzed synthesis of ammonia. Our study shows the impact of the rationally designed core and surface of InP QD-based photocatalysts in developing sustainable routes to produce ammonia beyond the Haber-Bosch process.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"32356-32365"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia Synthesis with Visible Light and Quantum Dots.\",\"authors\":\"Vanshika Jain, Shreya Tyagi, Pradyut Roy, Pramod P Pillai\",\"doi\":\"10.1021/jacs.4c06713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light-assisted synthesis of ammonia from nitrate and nitrite sources is a sustainable approach to reduce the burden of the energy-intensive Haber-Bosch process. However, poor selectivity and the need for UV-active photocatalysts are the current bottlenecks in the synthesis of ammonia from nitrate and nitrite sources. Herein, we introduce selective visible-light-driven ammonia production from nitrate and nitrite ions with indium phosphide quantum dots (InP QDs) as the photocatalyst. The presence of catalytic indium sites and microenvironment modulation through an interplay of catalyst-reactant interactions resulted in efficient and selective ammonia formation under visible light. Ammonia was produced in an attractive yield of ∼94% in both aqueous and gaseous phases within 2 h of visible-light irradiation at room temperature. A decent formation of ammonia was observed under sunlight as well, strengthening the translational prospects of InP QD photocatalysts. Mechanistic investigations ascertained a negligible role of competing hydrogen evolution in direct nitrate reduction, confirming the active participation of photoexcited charge carriers from InP QDs in the ammonia synthesis. Kinetic studies revealed the energetically challenging nitrate-to-nitrite conversion as the rate-determining step, with subsequent reactions proceeding with ∼100% conversion to yield ammonia. A series of experiments concluded that water is the proton source in the InP QD-photocatalyzed synthesis of ammonia. Our study shows the impact of the rationally designed core and surface of InP QD-based photocatalysts in developing sustainable routes to produce ammonia beyond the Haber-Bosch process.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"32356-32365\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c06713\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06713","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光助硝酸盐和亚硝酸盐合成氨是一种可持续的方法,可减轻高能耗的哈伯-博什工艺的负担。然而,选择性差和需要紫外线活性光催化剂是目前从硝酸盐和亚硝酸盐合成氨的瓶颈。在此,我们介绍了以磷化铟量子点(InP QDs)为光催化剂,在可见光驱动下从硝酸根离子和亚硝酸根离子中选择性地生产氨的方法。催化铟位点的存在以及通过催化剂-反应物相互作用进行的微环境调控,在可见光下高效、选择性地形成了氨。在室温下,可见光照射 2 小时内,水相和气相氨的产率均达到 94%。在阳光下也观察到了氨的形成,这增强了 InP QD 光催化剂的转化前景。机理研究发现,在直接还原硝酸盐的过程中,竞争性氢进化的作用微乎其微,这证实了 InP QD 光激发的电荷载流子积极参与了氨的合成。动力学研究表明,硝酸盐到亚硝酸盐的转化是决定速率的步骤,具有高能量挑战性,随后的反应以 100% 的转化率进行,生成氨。一系列实验得出结论,在 InP QD 光催化合成氨的过程中,水是质子源。我们的研究表明,合理设计基于 InP QD 的光催化剂的内核和表面,对开发哈伯-博什工艺以外的可持续氨生产路线具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ammonia Synthesis with Visible Light and Quantum Dots.

Ammonia Synthesis with Visible Light and Quantum Dots.

Light-assisted synthesis of ammonia from nitrate and nitrite sources is a sustainable approach to reduce the burden of the energy-intensive Haber-Bosch process. However, poor selectivity and the need for UV-active photocatalysts are the current bottlenecks in the synthesis of ammonia from nitrate and nitrite sources. Herein, we introduce selective visible-light-driven ammonia production from nitrate and nitrite ions with indium phosphide quantum dots (InP QDs) as the photocatalyst. The presence of catalytic indium sites and microenvironment modulation through an interplay of catalyst-reactant interactions resulted in efficient and selective ammonia formation under visible light. Ammonia was produced in an attractive yield of ∼94% in both aqueous and gaseous phases within 2 h of visible-light irradiation at room temperature. A decent formation of ammonia was observed under sunlight as well, strengthening the translational prospects of InP QD photocatalysts. Mechanistic investigations ascertained a negligible role of competing hydrogen evolution in direct nitrate reduction, confirming the active participation of photoexcited charge carriers from InP QDs in the ammonia synthesis. Kinetic studies revealed the energetically challenging nitrate-to-nitrite conversion as the rate-determining step, with subsequent reactions proceeding with ∼100% conversion to yield ammonia. A series of experiments concluded that water is the proton source in the InP QD-photocatalyzed synthesis of ammonia. Our study shows the impact of the rationally designed core and surface of InP QD-based photocatalysts in developing sustainable routes to produce ammonia beyond the Haber-Bosch process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信