{"title":"amoA基因的探针捕获富集测序改进了对多种氨氧化古细菌和细菌种群的检测。","authors":"Satoshi Hiraoka, Minoru Ijichi, Hirohiko Takeshima, Yohei Kumagai, Ching-Chia Yang, Yoko Makabe-Kobayashi, Hideki Fukuda, Susumu Yoshizawa, Wataru Iwasaki, Kazuhiro Kogure, Takuhei Shiozaki","doi":"10.1111/1755-0998.14042","DOIUrl":null,"url":null,"abstract":"<p><p>The ammonia monooxygenase subunit A (amoA) gene has been used to investigate the phylogenetic diversity, spatial distribution and activity of ammonia-oxidising archaeal (AOA) and bacterial (AOB), which contribute significantly to the nitrogen cycle in various ecosystems. Amplicon sequencing of amoA is a widely used method; however, it produces inaccurate results owing to the lack of a 'universal' primer set. Moreover, currently available primer sets suffer from amplification biases, which can lead to severe misinterpretation. Although shotgun metagenomic and metatranscriptomic analyses are alternative approaches without amplification bias, the low abundance of target genes in heterogeneous environmental DNA restricts a comprehensive analysis to a realisable sequencing depth. In this study, we developed a probe set and bioinformatics workflow for amoA enrichment sequencing using a hybridisation capture technique. Using metagenomic mock community samples, our approach effectively enriched amoA genes with low compositional changes, outperforming amplification and meta-omics sequencing analyses. Following the analysis of metatranscriptomic marine samples, we predicted 80 operational taxonomic units (OTUs) assigned to either AOA or AOB, of which 30 OTUs were unidentified using simple metatranscriptomic or amoA gene amplicon sequencing. Mapped read ratios to all the detected OTUs were significantly higher for the capture samples (50.4 ± 27.2%) than for non-capture samples (0.05 ± 0.02%), demonstrating the high enrichment efficiency of the method. The analysis also revealed the spatial diversity of AOA ecotypes with high sensitivity and phylogenetic resolution, which are difficult to examine using conventional approaches.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14042"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations.\",\"authors\":\"Satoshi Hiraoka, Minoru Ijichi, Hirohiko Takeshima, Yohei Kumagai, Ching-Chia Yang, Yoko Makabe-Kobayashi, Hideki Fukuda, Susumu Yoshizawa, Wataru Iwasaki, Kazuhiro Kogure, Takuhei Shiozaki\",\"doi\":\"10.1111/1755-0998.14042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ammonia monooxygenase subunit A (amoA) gene has been used to investigate the phylogenetic diversity, spatial distribution and activity of ammonia-oxidising archaeal (AOA) and bacterial (AOB), which contribute significantly to the nitrogen cycle in various ecosystems. Amplicon sequencing of amoA is a widely used method; however, it produces inaccurate results owing to the lack of a 'universal' primer set. Moreover, currently available primer sets suffer from amplification biases, which can lead to severe misinterpretation. Although shotgun metagenomic and metatranscriptomic analyses are alternative approaches without amplification bias, the low abundance of target genes in heterogeneous environmental DNA restricts a comprehensive analysis to a realisable sequencing depth. In this study, we developed a probe set and bioinformatics workflow for amoA enrichment sequencing using a hybridisation capture technique. Using metagenomic mock community samples, our approach effectively enriched amoA genes with low compositional changes, outperforming amplification and meta-omics sequencing analyses. Following the analysis of metatranscriptomic marine samples, we predicted 80 operational taxonomic units (OTUs) assigned to either AOA or AOB, of which 30 OTUs were unidentified using simple metatranscriptomic or amoA gene amplicon sequencing. Mapped read ratios to all the detected OTUs were significantly higher for the capture samples (50.4 ± 27.2%) than for non-capture samples (0.05 ± 0.02%), demonstrating the high enrichment efficiency of the method. The analysis also revealed the spatial diversity of AOA ecotypes with high sensitivity and phylogenetic resolution, which are difficult to examine using conventional approaches.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14042\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14042\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14042","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
氨单加氧酶亚基 A(amoA)基因已被用于研究氨氧化古细菌(AOA)和细菌(AOB)的系统发育多样性、空间分布和活性。氨氧化古细菌(amoA)的扩增子测序是一种广泛使用的方法;然而,由于缺乏 "通用 "引物集,这种方法产生的结果并不准确。此外,目前可用的引物组存在扩增偏差,可能导致严重的误读。虽然散弹枪元基因组和元转录组分析是没有扩增偏差的替代方法,但目标基因在异质环境 DNA 中的低丰度限制了全面分析的可实现测序深度。在这项研究中,我们利用杂交捕获技术为 amoA 富集测序开发了探针组和生物信息学工作流程。利用元基因组模拟群落样本,我们的方法有效地富集了组成变化较小的amoA基因,优于扩增和元组学测序分析。在对海洋样本进行元转录组学分析后,我们预测了 80 个可操作的分类单元(OTU),这些单元被归入 AOA 或 AOB,其中 30 个 OTU 通过简单的元转录组学或 amoA 基因扩增片段测序无法识别。捕获样本与所有检测到的 OTU 的映射读数比(50.4 ± 27.2%)明显高于非捕获样本(0.05 ± 0.02%),这表明该方法具有很高的富集效率。该分析还揭示了 AOA 生态型的空间多样性,具有较高的灵敏度和系统发育分辨率,这是传统方法难以研究的。
Probe Capture Enrichment Sequencing of amoA Genes Improves the Detection of Diverse Ammonia-Oxidising Archaeal and Bacterial Populations.
The ammonia monooxygenase subunit A (amoA) gene has been used to investigate the phylogenetic diversity, spatial distribution and activity of ammonia-oxidising archaeal (AOA) and bacterial (AOB), which contribute significantly to the nitrogen cycle in various ecosystems. Amplicon sequencing of amoA is a widely used method; however, it produces inaccurate results owing to the lack of a 'universal' primer set. Moreover, currently available primer sets suffer from amplification biases, which can lead to severe misinterpretation. Although shotgun metagenomic and metatranscriptomic analyses are alternative approaches without amplification bias, the low abundance of target genes in heterogeneous environmental DNA restricts a comprehensive analysis to a realisable sequencing depth. In this study, we developed a probe set and bioinformatics workflow for amoA enrichment sequencing using a hybridisation capture technique. Using metagenomic mock community samples, our approach effectively enriched amoA genes with low compositional changes, outperforming amplification and meta-omics sequencing analyses. Following the analysis of metatranscriptomic marine samples, we predicted 80 operational taxonomic units (OTUs) assigned to either AOA or AOB, of which 30 OTUs were unidentified using simple metatranscriptomic or amoA gene amplicon sequencing. Mapped read ratios to all the detected OTUs were significantly higher for the capture samples (50.4 ± 27.2%) than for non-capture samples (0.05 ± 0.02%), demonstrating the high enrichment efficiency of the method. The analysis also revealed the spatial diversity of AOA ecotypes with high sensitivity and phylogenetic resolution, which are difficult to examine using conventional approaches.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.